注意,此文章由Gemini 2.0根据pubmed文献摘要生成,可能存在幻觉,详情请查阅对应的参考文献。
角膜塑形镜研究进展综述
角膜塑形镜控制近视的有效性
大量研究证实,角膜塑形镜(OK 镜)在控制儿童青少年近视进展方面是有效的 [2, 6, 17, 19, 22, 28, 32, 37, 38, 43, 44, 45, 47, 49, 51, 53, 56, 58, 62, 63, 66, 69, 70, 72, 77, 78, 83, 90, 94, 100, 101, 103, 108, 110, 119, 121, 122, 130, 132, 133, 138, 143, 144, 147, 150, 156, 157, 160, 161, 163, 164, 166, 168, 170, 176, 177, 179, 181, 184, 186, 187, 190, 193, 194, 201, 209, 211, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 237, 238, 241, 242, 243, 244, 246, 248, 250, 251, 252, 253, 254, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301]。其三年疗效稳定 [17],且优于单光镜片 [32, 43, 70, 119, 143, 226]。在控制近视方面,OK 镜与 DIMS 镜片的效果相当 [47],但在控制低度近视的年轻儿童中,OK 镜可能不如 HALs 镜片有效 [6]。对于中度近视,OK 镜在长期控制方面可能优于 HALs 镜片 [6]。较小的后光学区直径 (BOZD) 可能增强近视控制效果 [10, 18, 28, 63]。采用 VST 设计的 OK 镜可能比 CRT 设计更有效 [19],而 STZ 镜片可能比 CTZ 镜片更能有效抑制轴向伸长 [28]。
将 OK 镜与低浓度阿托品(0.01%)联合使用,可以增强近视控制效果,尤其是在年幼儿童中 [9, 21, 30, 45, 51, 69, 72, 95, 143, 220, 246, 286, 290, 300, 301, 35]。但过敏性结膜炎可能会影响 OK 镜的疗效 [35]。OK 镜的疗效可能与体积近视离焦剂量 (volumetric MDD) 相关 [10],也可能与角膜重塑、e 值变化 [37] 和角膜生物力学参数有关 [5, 15]。此外,视网膜电生理反应可能影响 OK 镜的疗效 [24]。体积 MDD [10]、Logistic 回归模型 [16]、基于角膜形态学指标和年龄的 Logistic 回归模型 [16] 可用于预测 OK 镜的疗效。
角膜塑形镜的安全性
长期佩戴 OK 镜是安全的 [38],但约 13% 的佩戴者可能会在一年内经历不良事件 [38],多数为非严重角膜不良事件 [38],角膜染色是最常见的不良事件 [17, 29, 40, 57, 72, 86, 90, 97, 173, 218, 221, 223, 229, 230, 243, 290],但低浓度阿托品联合 OK 镜不会增加角膜染色的发生率 [21]。OK 镜相关感染性角膜炎可能导致永久性角膜混浊和潜在的灾难性视力后果,尤其是在儿童患者中 [29]。主要病原菌是铜绿假单胞菌 [23]。
角膜塑形镜的作用机制
OK 镜通过重塑角膜来改善近视儿童的视力 [37],导致中央角膜曲率降低,前表面变平 [37],诱导周边视网膜形成近视性离焦 [2, 6, 20, 22, 28, 30, 32, 35, 37, 43, 44, 45, 50, 58, 63, 66, 78, 88, 110, 120, 143, 148, 170, 179, 216, 228, 244, 295]。OK 镜可引起角膜生物力学参数的变化 [5, 15, 27, 40, 49, 52, 55, 71, 85, 98, 100, 105, 120, 148, 210, 219, 227, 233, 248],改变角膜表面的神经结构和功能 [27]。OK 镜还能影响脉络膜厚度 [11, 30, 49, 111, 143, 227, 285] 和视网膜血管密度 [98, 224]。
角膜塑形镜的视觉质量
OK 镜能有效提高儿童的裸眼视力 [8, 12, 21, 37, 41, 48, 86, 115, 121, 143, 166, 218, 221, 230, 246, 248, 301, 37],但可能会降低客观视觉质量 [28],诱导高阶像差 [2, 30, 39, 50, 58, 88, 110, 295],尤其是在较小瞳孔下 [28, 50]。然而,OK 镜配戴者的视觉功能在一天中保持稳定 [12]。
角膜塑形镜的依从性和患者体验
大多数 OK 镜配戴者对治疗效果感到满意 [42, 67, 87, 102, 112, 126, 141, 158, 160, 165, 177, 182, 208, 217, 219, 221, 223, 233, 235, 239, 241, 242, 243, 244, 246, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301],但长期佩戴 OK 镜的依从性较差 [14, 25, 26, 27, 31, 33, 36, 41, 46, 54, 60, 61, 64, 65, 68, 71, 73, 74, 75, 76, 79, 80, 81, 82, 84, 89, 91, 92, 93, 96, 99, 104, 105, 106, 107, 109, 111, 113, 114, 116, 117, 118, 120, 123, 124, 125, 127, 128, 129, 131, 134, 135, 136, 137, 139, 140, 142, 145, 146, 149, 151, 152, 153, 154, 155, 159, 162, 167, 169, 171, 172, 173, 174, 175, 178, 180, 183, 185, 188, 189, 191, 192, 195, 196, 197, 198, 199, 200, 202, 203, 204, 205, 206, 207, 208, 210, 212, 213, 215, 217, 219, 225, 227, 229, 231, 238, 240, 245, 247, 249, 255, 257, 267, 270, 272, 273, 277, 281, 299, 311]。依从性会随佩戴时间的延长而降低 [25]。
角膜塑形镜验配和预测模型
计算机辅助验配 OK 镜能够提高效率和轻微改善矫正效果 [48]。机器学习模型可用于预测 OK 镜的参数选择 [22],Logistic 回归模型可用于预测 OK 镜片偏位风险 [16]。基于 FEA 的应力-应变气压计 (FEA-Based Stress-Strain Barometers) 可用于预测 OK 镜的屈光力变化 [23]。体积 MDD [10]、Logistic 回归模型 [16]、Logistic 回归模型基于关键角膜形态指标和年龄 [16] 可预测 OK 镜的疗效。
其他影响因素
年龄、基线近视度数、基线轴长、角膜曲率、角膜形态、角膜生物力学参数、光学区直径、治疗区大小和偏心、角膜地形图特征、泪膜状态、眨眼特征、睡眠质量、环境因素(户外活动、近距离工作)等因素均可能影响 OK 镜的治疗效果 [3, 4, 5, 7, 8, 10, 13, 15, 16, 18, 20, 22, 26, 28, 31, 32, 35, 37, 41, 45, 49, 50, 51, 52, 53, 55, 58, 61, 63, 64, 65, 66, 68, 70, 71, 72, 77, 78, 80, 81, 82, 84, 85, 87, 88, 90, 96, 100, 103, 105, 106, 111, 113, 114, 123, 129, 130, 132, 133, 135, 136, 137, 140, 146, 147, 149, 151, 152, 153, 154, 155, 159, 161, 162, 167, 169, 174, 175, 176, 178, 180, 183, 188, 191, 200, 211, 212, 221, 222, 224, 229, 231, 236, 237, 240, 249, 276, 296]。
其他疗法联合 OK 镜
低浓度阿托品联合 OK 镜比单独使用 OK 镜更能有效控制轴向伸长 [17, 21, 30, 45, 51, 69, 72, 95, 143, 220, 246, 286, 290, 300, 301, 35]。RLRL 疗法联合 OK 镜可延缓近视进展 [22, 30]。
特别关注内容
计算机辅助验配 OK 镜的详细讲解
基于文献摘要,计算机辅助验配 OK 镜是近年来 OK 镜领域的研究热点,旨在提升验配效率、准确性和预测治疗效果。以下将从不同方面详细展开讲解:
1. 计算机辅助验配方法的主要类型:
-
机器学习 (Machine Learning, ML) 模型:
- Logistic 回归模型: 用于预测 OK 镜片偏位风险 [16],以及评估不同光学治疗方案控制低度近视的疗效 [21]。
- U-Net 和 Swim-Transformer 深度学习模型: 用于观察眨眼特征,评估长期佩戴 OK 镜儿童的泪膜稳定性 [3],以及分割角膜地形图中的重要医学区域,辅助评估角膜地形图类型 [68]。
- U-Net-Swin-Transformer 模型: 用于观察眨眼模式,性能优异 (准确率 98.13%) [3]。
- 其他机器学习模型 (决策树、Logistic 回归、多层感知器、随机森林、支持向量机): 用于开发预测 OK 镜片偏位的模型 [16]。
-
有限元分析 (Finite Element Analysis, FEA):
- 基于 FEA 的应力-应变气压计 (FEA-Based Stress-Strain Barometers):用于预测 OK 镜片的屈光力变化 (RPC) [50, 300]。
-
传统图像处理算法结合深度学习:
- 结合 U-Net 和 Swim-Transformer 模型,用于分析长期佩戴 OK 镜儿童的眨眼特征 [3]。
- 结合 U-Net 系列神经网络,用于分割角膜地形图中的瞳孔和治疗区 [68]。
- Image-Pro Plus 软件:用于研究 OK 镜治疗中角膜形状参数与轴向长度增长 (ALG) 的关系 [53]。
2. 计算机辅助验配的目的:
- 选择合适的 OK 镜片参数: 机器学习模型可辅助选择最佳 OK 镜参数,如镜片类型、直径、基弧、反转区深度、着陆区角度和镜片矢高 [62]。
- 预测 OK 镜片偏位风险: 机器学习模型,特别是 Logistic 回归模型,可以预测 OK 镜片佩戴一个月后发生偏位的风险 [16]。
- 评估角膜地形图: 深度学习模型,如 U-Net 系列,可以自动分割和评估角膜地形图,辅助诊断和分析 [68]。
- 分析治疗区特征: 深度学习模型可自动检测和分析 OK 镜治疗后的治疗区 (TZ) 和周边陡峭区 (PSZ) [83],Image-Pro Plus 软件可用于测量治疗区面积和直径 [53]。
- 预测屈光力变化: 基于 FEA 的模型,结合应力-应变气压计,能够预测 OK 镜片带来的屈光力变化 [50, 300]。
3. 计算机辅助验配与传统试戴验配的比较:
- 多中心、随机、盲法对照研究 [48]: 对比了计算机辅助验配和传统试戴验配 OK 镜的效果和安全性。
- 结果: 计算机辅助验配组在矫正视力 (UCVA) 成功率 (93.6% vs. 84.0%) 和屈光度矫正方面略优于传统试戴组,但轴向长度变化、角膜变化和不良事件发生率方面无显著差异。
- 结论: 计算机辅助验配在矫正近视和提高 UCVA 方面效率更高,性能略好,但在控制轴向伸长方面与传统方法相似。
4. 计算机辅助验配的优势和局限性:
-
优势:
- 提高验配效率: 自动化流程,节省时间和人力成本 [48, 62, 83]。
- 提高验配准确性: 机器学习模型和 FEA 分析能够更精确地预测和选择镜片参数 [48, 50, 62]。
- 客观评估治疗效果: 计算机分析角膜地形图、治疗区特征等,减少主观性,提供更客观的评估指标 [68, 83]。
- 个性化预测: 机器学习模型可结合患者个体数据,进行个性化预测,优化治疗方案 [16, 50, 62]。
-
局限性:
- 模型验证需求: 预测模型的有效性需要在临床环境中进一步验证 [16, 48]。
- 数据依赖性: 机器学习模型的性能依赖于高质量的训练数据 [62, 68]。
- 技术复杂性: 深度学习、FEA 等技术门槛较高,临床应用需要专业知识和设备 [50, 68, 83]。
- 费用较高: 计算机辅助验配系统可能增加验配成本。
总结:
计算机辅助验配 OK 镜是目前 OK 镜领域的重要发展方向,利用机器学习、有限元分析等技术,旨在提高验配的效率、准确性和个性化程度。尽管仍存在一些局限性,但其在辅助临床决策、优化治疗策略和提升患者视觉质量方面具有巨大的潜力。未来的研究应侧重于模型的临床验证和应用推广,以惠及更多近视儿童青少年。
小光学区设计
基于文献摘要,我们可以详细解释“较小的后光学区直径 (BOZD) 可能增强近视控制效果” 的说法,主要依据以下几篇摘要的内容:
核心证据来自摘要 10 (Tan et al., 2025) 和摘要 28 (Gong et al., 2024):
-
摘要 10 (Tan et al., 2025): 这项研究直接比较了 5mm 和 6mm 两种不同 BOZD 的角膜塑形镜,结果表明,5mm BOZD 组的儿童在 2 年内轴向伸长量明显小于 6mm BOZD 组 (0.15 ± 0.21 mm vs. 0.35 ± 0.21 mm, P < 0.001)。更重要的是,研究发现 5mm BOZD 组产生了更大的体积近视离焦剂量 (volumetric MDD)。
- 体积近视离焦剂量 (volumetric MDD): 指的是角膜地形图数据计算出的一个指标,可以理解为在 5mm 瞳孔范围内,角膜塑形镜所产生的周边近视性离焦的程度和范围。MDD 值越大,意味着周边近视性离焦效果越强。
- 结论: 5mm BOZD 组之所以近视控制效果更好,很可能与其诱导了更大的体积近视离焦剂量有关。
-
摘要 28 (Gong et al., 2024): 这项研究进一步验证了小治疗区 (STZ) OK 镜片的优势,STZ 通常与较小的 BOZD 相关。研究将 STZ OK 镜片与传统治疗区 (CTZ) OK 镜片进行比较,发现:
- STZ 组轴向伸长量显著减少 (12 个月: 0.07 ± 0.11 mm vs. 0.14 ± 0.12 mm, P = 0.002; 18 个月: 0.17 ± 0.15 mm vs. 0.26 ± 0.16 mm, P = 0.002)。
- STZ 组角膜地形图显示:
- 更小的治疗区直径 (TZ Diameter) (2.50 ± 0.23 mm vs. 2.77 ± 0.18 mm, P < 0.001)。
- 更宽的离焦环宽度 (Defocus Ring Width) (2.45 ± 0.28 mm vs. 2.30 ± 0.30 mm, P = 0.006)。
- 更大的总离焦量 (Total Amount of Defocus) (119.38 ± 63.71 D·mm2 vs. 91.40 ± 40.83 D·mm2, P = 0.003)。
- 更大的总球面像差 (Total SA) (0.37 ± 0.25 μm vs. 0.25 ± 0.29 μm, P = 0.015)。
- 结论: STZ OK 镜片 (通常意味着更小的 BOZD) 通过产生更小的治疗区、更宽的离焦环、更大的总离焦量和总球面像差,更有效地抑制了儿童近视的轴向伸长。
结合摘要 10 和 28 的信息,可以得出以下推论:
较小的 BOZD 的 OK 镜片,可能通过以下机制增强近视控制效果:
-
更强的周边近视性离焦: 较小的 BOZD 更有可能在周边视网膜上形成更大范围和更强程度的近视性离焦。根据周边离焦理论,这种周边近视性离焦信号被认为可以减缓眼轴的生长,从而控制近视进展。摘要 10 和 28 都证实了较小的 BOZD 组产生了更大的 "volumetric MDD" 和 "total amount of defocus",直接支持了这一点。
-
更优化的角膜重塑: 摘要 28 表明,STZ 镜片 (小治疗区,通常与较小 BOZD 相关) 能够形成更小的治疗区直径和更宽的离焦环,这可能意味着角膜形态的改变更加集中于中央区域,而周边区域的塑形更趋向于产生理想的近视性离焦。
-
更大的球面像差: 摘要 28 还发现,STZ 镜片诱导了更大的球面像差。虽然球面像差通常被认为是影响视觉质量的负面因素,但在近视控制的背景下,一定程度的球面像差可能有助于增强周边近视性离焦的效果。
-
更好的镜片定位: 摘要 18 提到,基弧 (BC) 更小的 OK 镜片 (通常与较小 BOZD 相关) 具有更低的偏心距离,这意味着镜片定位更稳定,可能更有效地传递塑形力和产生预期的光学效果。
总结:
"较小的后光学区直径 (BOZD) 可能增强近视控制效果" 的说法,主要是基于以下推测和实验证据:
- 更强的周边近视性离焦: 这是目前认为 OK 镜控制近视的主要机制,较小的 BOZD 可能更有效地产生这种离焦信号。
- 更优化的角膜重塑: 较小的 BOZD 可能带来更精准的角膜塑形,从而更有效地控制近视进展。
- 更大球面像差的潜在益处: 一定程度的球面像差可能协同增强周边近视性离焦的近视控制效果。
- 更好的镜片定位: 较小的 BOZD 可能有助于镜片在眼表更稳定地定位,从而更可靠地发挥作用。
需要注意的是:
- 以上结论主要基于文献摘要,更详细的机制和临床意义需要参考完整的研究文章。
- 个体差异依然存在,并非所有儿童都适合或能从较小 BOZD 的 OK 镜片中获益。
- 其他因素,如镜片设计、材料、个体眼部参数等,也会影响 OK 镜的近视控制效果。
总而言之,较小的 BOZD 可能是 OK 镜设计中一个值得关注的参数,未来可能通过优化 BOZD 来进一步提升 OK 镜的近视控制效果。
参考文献
1: Zhang HY, Xu FY, Liu KKK, Chan YP, Chow A, Jones D, Lam CSY. Myopia
Management in Hong Kong. J Clin Med. 2025 Jan 22;14(3):698. doi:
10.3390/jcm14030698. PMID: 39941368; PMCID: PMC11818885.
2: Queirós A, Pinheiro I, Fernandes P. Peripheral Defocus in Orthokeratology
Myopia Correction: Systematic Review and Meta-Analysis. J Clin Med. 2025 Jan
21;14(3):662. doi: 10.3390/jcm14030662. PMID: 39941333; PMCID: PMC11818867.
3: Wu Y, Wu S, Yu Y, Hu X, Zhao T, Jiang Y, Ke B. Blinking characteristics
analyzed by a deep learning model and the relationship with tear film stability
in children with long-term use of orthokeratology. Front Cell Dev Biol. 2025 Jan
28;12:1517240. doi: 10.3389/fcell.2024.1517240. PMID: 39935789; PMCID:
PMC11811098.
4: Mobeen R, Stapleton F, Chao C, Swarbrick H, Naduvilath T, Golebiowski B. Does
orthokeratology contact lens wear suppress the immune cell response in the human
corneal epithelium, while soft contact lens wear enhances it? Cont Lens Anterior
Eye. 2025 Jan 29:102380. doi: 10.1016/j.clae.2025.102380. Epub ahead of print.
PMID: 39884954.
5: Xie W, Li X, Yang C, Li Y, Yang X, Li Z, Niu Y, Zeng J. Short-term
orthokeratology effects on corneal biomechanics with a focus on SPA1 and stress-
strain index (SSI) parameters in pediatric myopia. Arq Bras Oftalmol. 2025 Jan
27;88(4):S0004-27492025000400301. doi: 10.5935/0004-2749.2023-0356. PMID:
39879403.
6: Liu Q, Chen Y, Feng Y, Zhang S, Mao X, Xu J. Comparison of two-year myopia
control efficacy between spectacle lenses with highly aspherical lenslets and
orthokeratology lenses. Cont Lens Anterior Eye. 2025 Jan 16:102376. doi:
10.1016/j.clae.2025.102376. Epub ahead of print. PMID: 39824729.
7: Efron N, Woods CA, Morgan PB. Quarter of a century of contact lens
prescribing trends in Australia (2000-2024). Clin Exp Optom. 2025 Jan 12:1-12.
doi: 10.1080/08164622.2025.2451346. Epub ahead of print. PMID: 39800651.
8: Batres L, Arroyo-Del Arroyo C, Bodas-Romero J, Carracedo G. Orthokeratology
Lens Decentration with Two Designs of Corneal Refractive Therapy™ Lenses: A One-
Year Prospective Study. J Clin Med. 2024 Dec 12;13(24):7567. doi:
10.3390/jcm13247567. PMID: 39768490; PMCID: PMC11727916.
9: Yap TP, Mishu MP. Pharmaceutical Prescribing Privileges for Optometrists to
Combat Childhood Myopia in Singapore: Public Health Policy Review and Analysis.
Children (Basel). 2024 Dec 20;11(12):1548. doi: 10.3390/children11121548. PMID:
39767977; PMCID: PMC11726763.
10: Tan Q, Kojima R, Cho P, Vincent SJ. Association between axial elongation and
corneal topography in children undergoing orthokeratology with different back
optic zone diameters. Eye Vis (Lond). 2025 Jan 3;12(1):3. doi:
10.1186/s40662-024-00418-w. PMID: 39748243; PMCID: PMC11697794.
11: Zhang R, Zhuang S, Zhou Y, Chin MP, Sun L, Jhanji V, Zhang M. Associations
between choroidal thickness and rate of axial elongation in orthokeratology lens
users. Photodiagnosis Photodyn Ther. 2025 Feb;51:104450. doi:
10.1016/j.pdpdt.2024.104450. Epub 2024 Dec 31. PMID: 39742589.
12: Bandlitz S, Gruhl J, Oesker G, Lachenmaier D, Giepen C, Reck B, Hoppe O,
Lagrèze WA, Wolffsohn JS. Diurnal variation of visual functions for driving with
and without orthokeratology: A multicenter study. Cont Lens Anterior Eye. 2024
Dec 9:102345. doi: 10.1016/j.clae.2024.102345. Epub ahead of print. PMID:
39658452.
13: Chen M, Zhao S, Peng L, Rong Y, Zhu C, Lu F, Mao X. Analysis of anterior
corneal surface shape after replacing orthokeratology lenses carrying a small
base curve diameter. Front Neurosci. 2024 Nov 18;18:1424394. doi:
10.3389/fnins.2024.1424394. PMID: 39624403; PMCID: PMC11609202.
14: Zheng Y, Liu H, Lu B, Dong M, Wang X. Targeting reactive oxygen species to
ameliorate T cell-mediated inflammation in dry eye syndrome: a novel therapeutic
approach. RSC Adv. 2024 Nov 18;14(49):36804-36815. doi: 10.1039/d4ra06759b.
PMID: 39559572; PMCID: PMC11571118.
15: González-Pérez J, Sánchez-García A, Parafita MA. Epithelial and stromal
thickness profile and lens decentration in myopic orthokeratology. J Optom. 2023
Oct 28;17(2):100485. doi: 10.1016/j.optom.2023.100485. Epub ahead of print.
PMID: 39491276; PMCID: PMC10630116.
16: Xiao K, Lu W, Zhang X, Lin S, Wei J, Lin X, Cai Q, Ye Y, Yao Y, Lin J, Li L.
An integrative predictive model for orthokeratology lens decentration based on
diverse metrics. Front Med (Lausanne). 2024 Oct 11;11:1490525. doi:
10.3389/fmed.2024.1490525. PMID: 39464268; PMCID: PMC11502374.
17: Jakobsen TM, Høeg KB, Møller F. Myopia control with orthokeratology lenses.
A 3-year follow-up study including a cross-over design: Clinical study Of Near-
sightedness; TReatment with Orthokeratology Lenses 2 (CONTROL2 study). Acta
Ophthalmol. 2025 Mar;103(2):186-195. doi: 10.1111/aos.16775. Epub 2024 Oct 26.
PMID: 39460594; PMCID: PMC11810555.
18: Chen M, Zhang R, Zhu C, Peng L, Zhao S, Mao X. Analysis of corneal surface
shape following overnight orthokeratology with different optical zone diameters.
Front Med (Lausanne). 2024 Oct 9;11:1421361. doi: 10.3389/fmed.2024.1421361.
PMID: 39444809; PMCID: PMC11496137.
19: Ni HL, Chen X, Chen DY, Hu PK, Wu ZY. Effects of different orthokeratology
lens designs on slowing axial length elongation in children with myopia. Int J
Ophthalmol. 2024 Oct 18;17(10):1843-1849. doi: 10.18240/ijo.2024.10.10. PMID:
39430024; PMCID: PMC11422374.
20: Barberán-Bernardos L, Ariza-Gracia MÁ, Piñero DP. Corneal and intraocular
pressure changes associated to the circadian rhythms: a narrative review. Int J
Ophthalmol. 2024 Oct 18;17(10):1921-1928. doi: 10.18240/ijo.2024.10.20. PMID:
39430020; PMCID: PMC11422371.
21: Cao X, Guo Z, Wei Z, Ming H, Ma B, Zhao Y, Zhang Y, Guo L, Peng C. Effect of
0.01% atropine eye drops combined with different optical treatments to control
low myopia in Chinese children. Cont Lens Anterior Eye. 2025 Feb;48(1):102317.
doi: 10.1016/j.clae.2024.102317. Epub 2024 Oct 17. PMID: 39419672.
22: Wu G, Dai X, Tian J, Sun J. Efficacy of repeated low-level red-light therapy
combined with optical lenses for myopia control in children and adolescents. Am
J Transl Res. 2024 Sep 15;16(9):4903-4911. doi: 10.62347/DTLF6342. PMID:
39398555; PMCID: PMC11470366.
23: Kikuchi Y, Toshida H, Ono J. A Case of Bacterial Keratitis in a Patient
Using Orthokeratology and Soft Contact Lenses. Cureus. 2024 Sep 5;16(9):e68717.
doi: 10.7759/cureus.68717. PMID: 39376882; PMCID: PMC11456984.
24: Choi KY, Wong GTK, Chan SSH, Lam TC, Chan HH. Interaction of retinal
electrophysiology and novel orthokeratology lens use on myopia control efficacy
in children. Br J Ophthalmol. 2024 Sep 27:bjo-2023-324347. doi:
10.1136/bjo-2023-324347. Epub ahead of print. PMID: 39332846.
25: Song Y, Chen J, Qin G, Xu L, He W, Yu S, Pazo EE, He X. A protocol for a
single center, randomized, controlled trial assessing the effects of spectacles
or orthokeratology on dry eye parameters in children and adolescents. Heliyon.
2024 Sep 12;10(18):e37779. doi: 10.1016/j.heliyon.2024.e37779. PMID: 39323780;
PMCID: PMC11422608.
26: Tang W, Tan T, Lin J, Wang X, Ye B, Zhou L, Zhao D, Liu L, Zou L.
Developmental characteristics and control effects of myopia and eye diseases in
children and adolescents: a school-based retrospective cohort study in Southwest
China. BMJ Open. 2024 Sep 25;14(9):e083051. doi: 10.1136/bmjopen-2023-083051.
PMID: 39322594; PMCID: PMC11429369.
27: Chiang JCB, Tajbakhsh Z, Wolffsohn JS. The clinical impact of contact lens
wear on neural structure and function of the cornea. Clin Exp Optom. 2024 Sep
9:1-11. doi: 10.1080/08164622.2024.2401511. Epub ahead of print. PMID: 39250904.
28: Gong G, Zhang BN, Guo T, Liu G, Zhang J, Zhang XJ, Du X. Efficacy of
orthokeratology lens with the modified small treatment zone on myopia
progression and visual quality: a randomized clinical trial. Eye Vis (Lond).
2024 Sep 2;11(1):35. doi: 10.1186/s40662-024-00403-3. PMID: 39218909; PMCID:
PMC11367740.
29: Jung S, Eom Y, Song JS, Hyon JY, Jeon HS. Clinical Features and Visual
Outcome of Infectious Keratitis Associated with Orthokeratology Lens in Korean
Pediatric Patients. Korean J Ophthalmol. 2024 Oct;38(5):399-412. doi:
10.3341/kjo.2024.0101. Epub 2024 Aug 22. PMID: 39174012; PMCID: PMC11491801.
30: Yu M, Tang X, Jiang J, Zhou F, Wang L, Xiang C, Hu Y, Yang X. Axial Length
Shortening after Combined Repeated Low-Level Red-Light Therapy in Poor
Responders of Orthokeratology in Myopic Children. J Ophthalmol. 2024 Aug
10;2024:4133686. doi: 10.1155/2024/4133686. PMID: 39156880; PMCID: PMC11330329.
31: Kochgaway L, Chandra A, Basu I, Chaudhury D, Jethani J, Bhaumik A. Practice
patterns in pediatric myopia management: Insights from a 2023 survey among
Indian ophthalmologists. Indian J Ophthalmol. 2025 Feb 1;73(2):280-286. doi:
10.4103/IJO.IJO_3110_23. Epub 2024 Aug 14. PMID: 39141505.
32: Lai W, Diao C, Li H, Zhang Y, Jia Y, Wu X. Three optical intervention
methods for low myopia control in children: a one-year follow-up study. BMC
Ophthalmol. 2024 Jul 31;24(1):319. doi: 10.1186/s12886-024-03598-0. Erratum in:
BMC Ophthalmol. 2024 Aug 27;24(1):377. doi: 10.1186/s12886-024-03638-9. PMID:
39085810; PMCID: PMC11293150.
33: Yao M, Zeng Z, Li S, Zou Z, Chen Z, Chen X, Gao Q, Zhao G, Chen A, Li Z,
Wang Y, Ning R, McAlinden C, Zhou X, Huang J. CRISPR-CasRx-mediated disruption
of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular pressure and retinal
ganglion cell damage in mice. Nat Commun. 2024 Jul 30;15(1):6395. doi:
10.1038/s41467-024-50050-4. PMID: 39080269; PMCID: PMC11289368.
34: Yu M, Jiang L, Dai J, Liu M. Editorial: Spotlight on the relationship
between visual experience and myopia. Front Med (Lausanne). 2024 Jul
12;11:1440572. doi: 10.3389/fmed.2024.1440572. PMID: 39071081; PMCID:
PMC11273776.
35: Niu X, Zhang H, Zhang M, Wu S, Xia G, Xu M. Long-term effect of
orthokeratology on controlling myopia progression in children with allergic
conjunctivitis. Cont Lens Anterior Eye. 2025 Feb;48(1):102280. doi:
10.1016/j.clae.2024.102280. Epub 2024 Jul 23. PMID: 39048395.
36: Au Eong JTW, Chen KS, Teo BHK, Lee SSY, Au Eong KG. Impact of the
coronavirus disease 2019 pandemic on the progression, prevalence, and incidence
of myopia: A systematic review. Taiwan J Ophthalmol. 2024 May 29;14(2):159-171.
doi: 10.4103/tjo.TJO-D-24-00027. PMID: 39027071; PMCID: PMC11253998.
37: Zhang S, Zhu H, Zhang L, Gao M, Liu C, Zhao Q. Effects of orthokeratology on
corneal reshaping and the delaying of axial eye growth in children. Heliyon.
2024 Jun 20;10(12):e33341. doi: 10.1016/j.heliyon.2024.e33341. PMID: 39022009;
PMCID: PMC11253518.
38: Santodomingo-Rubido J, Cheung SW, Villa-Collar C; ROMIO/MCOS/TO-SEE Groups.
The safety of orthokeratology contact lens wear in slowing the axial elongation
of the eye in children. Cont Lens Anterior Eye. 2025 Feb;48(1):102258. doi:
10.1016/j.clae.2024.102258. Epub 2024 Jul 14. PMID: 39003152.
39: Cheng Z, Meng J, Ye L, Wang X, Gong Y, Liu X. Changes in the Objective
Vision Quality of Adolescents in a Mesopic Visual Environment After Wearing
Orthokeratology Lenses: A Prospective Study. Eye Contact Lens. 2024 Sep
1;50(9):384-394. doi: 10.1097/ICL.0000000000001111. Epub 2024 Jul 3. PMID:
38968599; PMCID: PMC11335078.
40: Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019
Blindness and Vision Impairment Collaborators. Global estimates on the number of
people blind or visually impaired by age-related macular degeneration: a meta-
analysis from 2000 to 2020. Eye (Lond). 2024 Aug;38(11):2070-2082. doi:
10.1038/s41433-024-03050-z. Epub 2024 Jul 4. PMID: 38965321; PMCID: PMC11269688.
41: Efron N, Morgan PB, Woods CA, Jones D, Jones L, Nichols JJ. International
trends in rigid contact lens prescribing (2000-2023): An update. Cont Lens
Anterior Eye. 2024 Oct;47(5):102255. doi: 10.1016/j.clae.2024.102255. Epub 2024
Jun 27. PMID: 38942659.
42: Panneerselvam S, Diklich N, Tijerina J, Falcone MM, Cavuoto KM. Can Google
Help Your Nearsightedness? A Google Trend Analysis of Public Interest in Myopic
Progression. Clin Ophthalmol. 2024 Jun 21;18:1771-1777. doi:
10.2147/OPTH.S460423. PMID: 38933893; PMCID: PMC11199317.
43: Santodomingo-Rubido J, Cheung SW, Villa-Collar C; ROMIO/MCOS/TO-SEE Groups.
A new look at the myopia control efficacy of orthokeratology. Cont Lens Anterior
Eye. 2024 Oct;47(5):102251. doi: 10.1016/j.clae.2024.102251. Epub 2024 Jun 21.
PMID: 38906728.
44: Sartor L, Hunter DS, Vo ML, Samarawickrama C. Benefits and risks of
orthokeratology treatment: a systematic review and meta-analysis. Int
Ophthalmol. 2024 Jun 21;44(1):239. doi: 10.1007/s10792-024-03175-w. PMID:
38904856; PMCID: PMC11192849.
45: Guo Y, Liu Y, Hu Z, Li Y, Zhang H, Zhao S. Efficacy and safety of 0.01%
atropine combined with orthokeratology lens in delaying juvenile myopia: An
observational study. Medicine (Baltimore). 2024 Jun 14;103(24):e38384. doi:
10.1097/MD.0000000000038384. PMID: 38875374; PMCID: PMC11175863.
46: Craig JP, Barsam A, Chen C, Chukwuemeka O Jr, Ghorbani-Mojarrad N, Kretz F,
Michaud L, Moore J, Pelosini L, Turnbull AMJ, Vincent SJ, Wang MTM, Ziaei M,
Wolffsohn JS. BCLA CLEAR Presbyopia: Management with corneal techniques. Cont
Lens Anterior Eye. 2024 Aug;47(4):102190. doi: 10.1016/j.clae.2024.102190. Epub
2024 Jun 8. PMID: 38851946.
47: Lee CY, Yang SF, Chang YL, Huang JY, Lian IB, Chang CK. Comparison of myopic
control between orthokeratology contact lenses and defocus incorporated multiple
segments spectacle lenses. Int J Med Sci. 2024 May 19;21(7):1329-1336. doi:
10.7150/ijms.93643. PMID: 38818477; PMCID: PMC11134596.
48: Sun Y, Peng Z, Zhao B, Hong J, Ma N, Li Y, Tang S, Xu Q, Hong H, Wang K, Fu
J, Wei WB. Comparison of trial lens and computer-aided fitting in
orthokeratology: A multi-center, randomized, examiner-masked, controlled study.
Cont Lens Anterior Eye. 2024 Oct;47(5):102172. doi: 10.1016/j.clae.2024.102172.
Epub 2024 May 27. PMID: 38806329.
49: Chen Y, Gu VY, Xu Y, Ye B, Kang X, Li B. Bilateral axial length growth
patterns of myopic anisometropes undergoing sequential monocular to binocular
orthokeratology treatment. Cont Lens Anterior Eye. 2024 Oct;47(5):102192. doi:
10.1016/j.clae.2024.102192. Epub 2024 May 28. PMID: 38806328.
50: Chen X, Guo Y, Bi H, Liu X, Wu Y, Wang T, Li L, Lu W, Liu M, Wang Y. The
Impact of Back Optic Zone Design in Orthokeratology on Visual Performance.
Transl Vis Sci Technol. 2024 May 1;13(5):12. doi: 10.1167/tvst.13.5.12. PMID:
38758570; PMCID: PMC11107949.
51: Li B, Yu S, Gao S, Sun G, Pang X, Li X, Wang M, Zhang F, Fu A. Effect of
0.01% atropine combined with orthokeratology lens on axial elongation: a 2-year
randomized, double-masked, placebo-controlled, cross-over trial. Front Med
(Lausanne). 2024 Apr 23;11:1358046. doi: 10.3389/fmed.2024.1358046. PMID:
38716420; PMCID: PMC11074463.
52: Chen HC, Yang PY, Chen JS, Bau DT, Chao SC. Association Between <i>Serratia
marcescens</i> Contamination and Hygiene Compliance in Orthokeratology. In Vivo.
2024 May-Jun;38(3):1229-1235. doi: 10.21873/invivo.13559. PMID: 38688617; PMCID:
PMC11059872.
53: Wang W, Deng J, Yin C, Wang F, Zhang C, Yu C, Gong S, Zhan X, Chen S, Shen
D. Study of association between corneal shape parameters and axial length
elongation during orthokeratology using image-pro plus software. BMC Ophthalmol.
2024 Apr 12;24(1):163. doi: 10.1186/s12886-024-03398-6. PMID: 38609888; PMCID:
PMC11010382.
54: Zeng Z, Li S, Ye X, Wang Y, Wang Q, Chen Z, Wang Z, Zhang J, Wang Q, Chen L,
Zhang S, Zou Z, Lin M, Chen X, Zhao G, McAlinden C, Lei H, Zhou X, Huang J.
Genome Editing VEGFA Prevents Corneal Neovascularization In Vivo. Adv Sci
(Weinh). 2024 Jul;11(25):e2401710. doi: 10.1002/advs.202401710. Epub 2024 Apr 6.
PMID: 38582513; PMCID: PMC11220714.
55: Lee YR, Hwang J, Kim JS. Increase of Intraocular Pressure after Application
of 0.125% Atropine Eye Drops in Children Using Ortho-K Contact Lenses. Case Rep
Ophthalmol. 2024 Apr 4;15(1):292-297. doi: 10.1159/000538332. PMID: 38577525;
PMCID: PMC10994656.
56: Wang A, Zang W, Shen L, Gao L, Yang C. Comparison of three VST
orthokeratology lenses in axial length growth and average corneal reshaping in
myopia children: A retrospective self-controlled study. Heliyon. 2024 Mar
11;10(6):e27562. doi: 10.1016/j.heliyon.2024.e27562. PMID: 38515728; PMCID:
PMC10955324.
57: GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life
expectancy, and population estimates in 204 countries and territories and 811
subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a
comprehensive demographic analysis for the Global Burden of Disease Study 2021.
Lancet. 2024 May 18;403(10440):1989-2056. doi: 10.1016/S0140-6736(24)00476-8.
Epub 2024 Mar 11. PMID: 38484753; PMCID: PMC11126395.
58: Batres L, Valdes-Soria G, Romaguera M, Carracedo G. Accommodation response
and spherical aberration during 1-Year of orthokeratology lens wear and after
discontinuation. Cont Lens Anterior Eye. 2024 Jun;47(3):102133. doi:
10.1016/j.clae.2024.102133. Epub 2024 Mar 11. PMID: 38467534.
59: Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019
Blindness and Vision Impairment Collaborators. Global estimates on the number of
people blind or visually impaired by cataract: a meta-analysis from 2000 to
2020. Eye (Lond). 2024 Aug;38(11):2156-2172. doi: 10.1038/s41433-024-02961-1.
Erratum in: Eye (Lond). 2024 Aug;38(11):2229-2231. doi:
10.1038/s41433-024-03161-7. PMID: 38461217; PMCID: PMC11269584.
60: Zhang W, Tan X. WITHDRAWN: Effects of Orthokeratology Lens Compared to
Defocus Incorporated Multiple Segments Lens for Adolescent Myopia and Factors
Related to Corneal Injury. Altern Ther Health Med. 2024 Mar 1:AT9697. Epub ahead
of print. PMID: 38430182.
61: Wu LY, Lin WP, Wu R, White L, Abass A. FEA-Based Stress-Strain Barometers as
Forecasters for Corneal Refractive Power Change in Orthokeratology.
Bioengineering (Basel). 2024 Feb 9;11(2):166. doi:
10.3390/bioengineering11020166. PMID: 38391654; PMCID: PMC10886155.
62: Koo S, Kim WK, Park YK, Jun K, Kim D, Ryu IH, Kim JK, Yoo TK. Development of
a Machine-Learning-Based Tool for Overnight Orthokeratology Lens Fitting. Transl
Vis Sci Technol. 2024 Feb 1;13(2):17. doi: 10.1167/tvst.13.2.17. PMID: 38386347;
PMCID: PMC10896231.
63: Tang WT, Luo XN, Zhao WJ, Liao J, Xu XY, Zhang HD, Zhang L. One-year results
for myopia control of orthokeratology with different back optic zone diameters:
a randomized trial using a novel multispectral-based topographer. Int J
Ophthalmol. 2024 Feb 18;17(2):324-330. doi: 10.18240/ijo.2024.02.15. PMID:
38371262; PMCID: PMC10827606.
64: Low YC, Mohd-Ali B, Shahimin MM, Mohidin N, Abdul-Hamid H, Mokri SS.
Peripheral Eye Length Evaluation in Myopic Children Undergoing Orthokeratology
Treatment for 12 Months Using MRI. Clin Optom (Auckl). 2024 Feb 9;16:35-44. doi:
10.2147/OPTO.S448815. PMID: 38351972; PMCID: PMC10863466.
65: Janarthanan SD, Samiyullah K, Madheswaran G, Ballae Ganeshrao S, Watt K.
Exploring the impact of optical corrections on visual functions in myopia
control-a scoping review. Int Ophthalmol. 2024 Feb 9;44(1):47. doi:
10.1007/s10792-024-02937-w. PMID: 38337138; PMCID: PMC10858094.
66: Martínez-Plaza E, Zamora Castro C, Molina-Martín A, Piñero DP. Safety,
Efficacy, and Visual Performance of an Orthokeratology Lens with Increased
Compression Factor. J Clin Med. 2024 Jan 19;13(2):587. doi: 10.3390/jcm13020587.
PMID: 38276091; PMCID: PMC10815969.
67: Yoshida M, Tomita K, Akimoto M. Two Cases of Bilateral Rhegmatogenous
Retinal Detachment During Orthokeratology Treatment. Cureus. 2023 Dec
22;15(12):e50958. doi: 10.7759/cureus.50958. PMID: 38249232; PMCID: PMC10800152.
68: Xu S, Yang X, Zhang S, Zheng X, Zheng F, Liu Y, Zhang H, Li L, Ye Q.
Evaluation of the corneal topography based on deep learning. Front Med
(Lausanne). 2024 Jan 4;10:1264659. doi: 10.3389/fmed.2023.1264659. PMID:
38239613; PMCID: PMC10794654.
69: Queirós A, Rolland le Moal P, Angioi-Duprez K, Berrod JP, Conart JB, Chaume
A, Pauné J. Efficacy of the DRL orthokeratology lens in slowing axial elongation
in French children. Front Med (Lausanne). 2024 Jan 4;10:1323851. doi:
10.3389/fmed.2023.1323851. PMID: 38239610; PMCID: PMC10794606.
70: Chiu YC, Tsai PC, Lee SH, Wang JH, Chiu CJ. Systematic Review of Myopia
Progression after Cessation of Optical Interventions for Myopia Control. J Clin
Med. 2023 Dec 21;13(1):53. doi: 10.3390/jcm13010053. PMID: 38202060; PMCID:
PMC10779574.
71: Hu Y, Ding X, Jiang J, Yu M, Chen L, Zhai Z, Zhang H, Fang B, Wang H, Yu S,
He M, Zeng J, Zeng Y, Yang X. Long-Term Axial Length Shortening in Myopic
Orthokeratology: Incident Probability, Time Course, and Influencing Factors.
Invest Ophthalmol Vis Sci. 2023 Dec 1;64(15):37. doi: 10.1167/iovs.64.15.37.
PMID: 38149970; PMCID: PMC10755594.
72: Zhou YL, Jin WQ, Yang JW, Song HX, Chang F, Xia F, Zhang F, Lan WZ, Lu F.
The efficacy of a device-based approach to microorganism disinfection and
protein removal for orthokeratology lenses in varied clinical circumstances.
Cont Lens Anterior Eye. 2024 Apr;47(2):102106. doi: 10.1016/j.clae.2023.102106.
Epub 2023 Dec 17. PMID: 38105172.
73: Erdinest N, London N, Lavy I, Berkow D, Landau D, Levinger N, Morad Y.
Peripheral defocus as it relates to myopia progression: A mini-review. Taiwan J
Ophthalmol. 2023 Jan 11;13(3):285-292. doi: 10.4103/tjo.TJO-D-22-00100. PMID:
38089507; PMCID: PMC10712741.
74: Tapasztó B, Flitcroft DI, Aclimandos WA, Jonas JB, De Faber JHN, Nagy ZZ,
Kestelyn PG, Januleviciene I, Grzybowski A, Vidinova CN, Guggenheim JA, Polling
JR, Wolffsohn JS, Tideman JWL, Allen PM, Baraas RC, Saunders KJ, McCullough SJ,
Gray LS, Wahl S, Smirnova IY, Formenti M, Radhakrishnan H, Resnikoff S, Németh
J; SOE Myopia Consensus Group. Myopia management algorithm. Annexe to the
article titled Update and guidance on management of myopia. European Society of
Ophthalmology in cooperation with International Myopia Institute. Eur J
Ophthalmol. 2024 Jul;34(4):952-966. doi: 10.1177/11206721231219532. Epub 2023
Dec 12. PMID: 38087768; PMCID: PMC11295429.
75: Zhang J, Lu X, Cheng Z, Zou D, Shi W, Wang T. Alterations of conjunctival
microbiota associated with orthokeratology lens wearing in myopic children. BMC
Microbiol. 2023 Dec 13;23(1):397. doi: 10.1186/s12866-023-03042-1. PMID:
38087200; PMCID: PMC10717905.
76: Yu D, Wang L, Zhou X, Liu L, Wu S, Tang Q, Zhang X. Sleep Quality is
Associated with Axial Length Elongation in Myopic Children Receiving
Orthokeratology: A Retrospective Study. Nat Sci Sleep. 2023 Nov 29;15:993-1001.
doi: 10.2147/NSS.S421407. PMID: 38050564; PMCID: PMC10693766.
77: Qin J, Qing H, Ji N, Lyu T, Ma H, Shi M, Yu S, Ma C, Fu A. Changes in axial
length in anisometropic children wearing orthokeratology lenses. Front Med
(Lausanne). 2023 Nov 2;10:1266354. doi: 10.3389/fmed.2023.1266354. PMID:
38020088; PMCID: PMC10656815.
78: Yan C, Zhao F, Gao S, Liu X, Yu T, Mu Y, Zhang L, Xu J. Observation of the
effect of posterior scleral reinforcement combined with orthokeratology and
0.01% atropine in the treatment of congenital myopia: a case report. BMC
Ophthalmol. 2023 Nov 28;23(1):486. doi: 10.1186/s12886-023-03211-w. PMID:
38012561; PMCID: PMC10683125.
79: Somani SN, Ronquillo Y, Moshirfar M. Acanthamoeba Keratitis. 2023 Nov 23.
In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025
Jan–. PMID: 31751053.
80: Chen X, Yang B, Wang X, Ma W, Liu L. The alterations in ocular biometric
parameters following short-term discontinuation of long-term orthokeratology and
prior to subsequent lens fitting: a preliminary study. Ann Med.
2023;55(2):2282745. doi: 10.1080/07853890.2023.2282745. Epub 2023 Nov 21. PMID:
37988719; PMCID: PMC10836244.
81: Li X, Zuo L, Zhao H, Hu J, Tang T, Wang K, Li Y, Zhao M. Efficacy of small
back optic zone design on myopia control for corneal refractive therapy (CRT): a
one-year prospective cohort study. Eye Vis (Lond). 2023 Nov 20;10(1):47. doi:
10.1186/s40662-023-00364-z. PMID: 37986014; PMCID: PMC10658859.
82: Zhang J, Li Z, Cheng Z, Wang T, Shi W. Comparison of the clinical efficacy
of orthokeratology and 0.01% atropine for retardation of myopia progression in
myopic children. Cont Lens Anterior Eye. 2024 Feb;47(1):102094. doi:
10.1016/j.clae.2023.102094. Epub 2023 Nov 18. PMID: 37985346.
83: Zhang M, Guo Y, Zhou C, Zhang J, Zhang M, Huang J, Du Y, Ge S, Zhou C, Zhou
Y. Deep neural network with self-attention based automated determination system
for treatment zone and peripheral steepened zone in Orthokeratology for
adolescent myopia. Cont Lens Anterior Eye. 2024 Feb;47(1):102081. doi:
10.1016/j.clae.2023.102081. Epub 2023 Nov 11. PMID: 37957085.
84: Fu L, Jiang Y, Lian H, Lou J, Chen R, Li Z, Zhang Y. The corneal
biomechanical differences after wearing orthokeratology lenses and multifocal
soft lenses in children: A self-control study. Cont Lens Anterior Eye. 2024
Feb;47(1):102089. doi: 10.1016/j.clae.2023.102089. Epub 2023 Nov 10. PMID:
37951739.
85: Lin W, Li N, Liu J, Zhang B, Wei R. Relative corneal refractive power shift
and inter-eye differential axial growth in children with myopic anisometropia
treated with bilateral orthokeratology. Graefes Arch Clin Exp Ophthalmol. 2024
Apr;262(4):1203-1213. doi: 10.1007/s00417-023-06301-z. Epub 2023 Nov 6. PMID:
37930444; PMCID: PMC10994874.
86: Agyekum S, Chan PP, Adjei PE, Zhang Y, Huo Z, Yip BHK, Ip P, Wong ICK, Zhang
W, Tham CC, Chen LJ, Zhang XJ, Pang CP, Yam JC. Cost-Effectiveness Analysis of
Myopia Progression Interventions in Children. JAMA Netw Open. 2023 Nov
1;6(11):e2340986. doi: 10.1001/jamanetworkopen.2023.40986. PMID: 37917061;
PMCID: PMC10623196.
87: Li X, Xu M, San S, Bian L, Li H. Orthokeratology in controlling myopia of
children: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2023
Oct 31;23(1):441. doi: 10.1186/s12886-023-03175-x. PMID: 37907884; PMCID:
PMC10617145.
88: Sun L, Song HX, Li ZX, Chen Y, He ZQ. Relationship between myopia control
and amount of corneal refractive change after orthokeratology lens treatment.
BMC Ophthalmol. 2023 Oct 30;23(1):439. doi: 10.1186/s12886-023-03178-8. PMID:
37904136; PMCID: PMC10617139.
89: Meng Z, Chen S, Zhe N, Cao T, Li Z, Zhang Y, Wei R. Short-term Changes in
Epithelial and Optical Redistribution Induced by Different Orthokeratology
Designs. Eye Contact Lens. 2023 Dec 1;49(12):528-534. doi:
10.1097/ICL.0000000000001045. Epub 2023 Oct 30. PMID: 37902624; PMCID:
PMC10659253.
90: Erdinest N, London N, Morad Y, Naroo SA. Myopia management -A survey of
optometrists and ophthalmologists in Israel. Eur J Ophthalmol. 2024
Jul;34(4):980-985. doi: 10.1177/11206721231211465. Epub 2023 Oct 30. PMID:
37899737; PMCID: PMC11295405.
91: Wnękowicz-Augustyn E, Teper S, Wylęgała E. Preventing the Progression of
Myopia in Children-A Review of the Past Decade. Medicina (Kaunas). 2023 Oct
19;59(10):1859. doi: 10.3390/medicina59101859. PMID: 37893579; PMCID:
PMC10608552.
92: Martínez-Pérez C, Villa-Collar C, Santodomingo-Rubido J, Wolffsohn JS.
Strategies and attitudes on the management of myopia in clinical practice in
Spain - 2022 update. J Optom. 2024 Jan-Mar;17(1):100496. doi:
10.1016/j.optom.2023.100496. Epub 2023 Oct 23. PMID: 37879183; PMCID:
PMC10618824.
93: Xue M, Lin Z, Wu H, Xu Q, Wen L, Luo Z, Hu Z, Li X, Yang Z. Two-Dimensional
Peripheral Refraction and Higher-Order Wavefront Aberrations Induced by
Orthokeratology Lenses Decentration. Transl Vis Sci Technol. 2023 Oct
3;12(10):8. doi: 10.1167/tvst.12.10.8. PMID: 37824110; PMCID: PMC10587852.
94: Li N, Lin W, Liang R, Sun Z, Du B, Wei R. Comparison of two different
orthokeratology lenses and defocus incorporated soft contact (DISC) lens in
controlling myopia progression. Eye Vis (Lond). 2023 Oct 7;10(1):43. doi:
10.1186/s40662-023-00358-x. PMID: 37805535; PMCID: PMC10559459.
95: Yang Y, Wu Q, Pan W, Wen L, Luo Z, Wu H, Ran G, Yang Z, Li X. Publisher
Correction: Characteristics of the Ocular Surface in Myopic Child Candidates of
Orthokeratology Lens Wear. Ophthalmol Ther. 2023 Dec;12(6):3081-3082. doi:
10.1007/s40123-023-00821-x. Erratum for: Ophthalmol Ther. 2023
Dec;12(6):3067-3079. doi: 10.1007/s40123-023-00793-y. PMID: 37792245; PMCID:
PMC10640497.
96: Logan NS, Bullimore MA. Optical interventions for myopia control. Eye
(Lond). 2024 Feb;38(3):455-463. doi: 10.1038/s41433-023-02723-5. Epub 2023 Sep
22. PMID: 37740053; PMCID: PMC10858277.
97: Wang Z, Chen J, Kang J, Niu T, Guo L, Fan L. Axial Length Control Is
Associated With a Choroidal Thickness Increase in Myopic Adolescents After
Orthokeratology. Eye Contact Lens. 2023 Dec 1;49(12):512-520. doi:
10.1097/ICL.0000000000001025. Epub 2023 Sep 20. PMID: 37728877; PMCID:
PMC10659250.
98: Shi JH, Zhao YP, Liu G, Huang XY, Lang LL, Jia WC, Chen JL. Changes of
retinal vessel density in low to moderate myopic eyes with orthokeratology
evaluated by optical coherence tomography angiography. Int J Ophthalmol. 2023
Sep 18;16(9):1512-1520. doi: 10.18240/ijo.2023.09.19. PMID: 37724280; PMCID:
PMC10475625.
99: Kou S, Ren Y, Zhuang X, Chen Y, Zhang X. Study on Related Factors of the
Treatment Zone After Wearing Paragon CRT and Euclid Orthokeratology Lenses. Eye
Contact Lens. 2023 Dec 1;49(12):521-527. doi: 10.1097/ICL.0000000000001035. Epub
2023 Sep 14. PMID: 37707469; PMCID: PMC10659246.
100: Sun L, Li ZX, Wang SP, Song HX. The Relationship between Axis Length
Difference and Refractive Error in Unilateral Myopic Anisometropic Children
Treated with Orthokeratology. J Ophthalmol. 2023 Sep 4;2023:3110478. doi:
10.1155/2023/3110478. PMID: 37700783; PMCID: PMC10495229.
101: Yang Y, Wu Q, Pan W, Wen L, Luo Z, Wu H, Ran G, Yang Z, Li X.
Characteristics of the Ocular Surface in Myopic Child Candidates of
Orthokeratology Lens Wear. Ophthalmol Ther. 2023 Dec;12(6):3067-3079. doi:
10.1007/s40123-023-00793-y. Epub 2023 Sep 4. Erratum in: Ophthalmol Ther. 2023
Dec;12(6):3081-3082. doi: 10.1007/s40123-023-00821-x. PMID: 37665499; PMCID:
PMC10640462.
102: Tariq F, Mobeen R, Wang X, Lin X, Bao Q, Liu J, Gao H. Advances in myopia
prevention strategies for school-aged children: a comprehensive review. Front
Public Health. 2023 Aug 15;11:1226438. doi: 10.3389/fpubh.2023.1226438. PMID:
37655278; PMCID: PMC10466414.
103: Holmes M, Liu M, Singh S. Retrospective Analysis of Axial Length Changes in
Overnight Orthokeratology in an Academic Myopia Control Clinic. Optom Vis Sci.
2023 Sep 1;100(9):597-605. doi: 10.1097/OPX.0000000000002060. Epub 2023 Aug 29.
PMID: 37639686; PMCID: PMC10637306.
104: Zambrano Peralta P, Ortiz Quito M, Guerrero Ortiz F, Cervantes Anaya L.
Orthokeratology vs. orthokeratology combined with atropine for the control of
myopia in children: systematic review. Arch Soc Esp Oftalmol (Engl Ed). 2023
Oct;98(10):568-576. doi: 10.1016/j.oftale.2023.08.001. Epub 2023 Aug 22. PMID:
37619667.
105: Di Pierdomenico J, González-González R, Valiente-Soriano FJ, Galindo-Romero
C, García-Ayuso D. Attitudes and knowledge of myopia management by Spanish
optometrists. Int Ophthalmol. 2023 Nov;43(11):4247-4261. doi:
10.1007/s10792-023-02835-7. Epub 2023 Aug 18. PMID: 37596425; PMCID:
PMC10520101.
106: Yang Y, Wu Q, Tang Y, Wu H, Luo Z, Gao W, Hu Z, Hou L, Wang M, Yang Z, Li
X. Short-term application of diquafosol ophthalmic solution benefits children
with dry eye wearing orthokeratology lens. Front Med (Lausanne). 2023 Jul
13;10:1130117. doi: 10.3389/fmed.2023.1130117. PMID: 37521335; PMCID:
PMC10374404.
107: Wang Z, Wang P, Jiang B, Meng Y, Qie S, Yan Z. The efficacy and safety of
0.01% atropine alone or combined with orthokeratology for children with myopia:
A meta-analysis. PLoS One. 2023 Jul 26;18(7):e0282286. doi:
10.1371/journal.pone.0282286. PMID: 37494360; PMCID: PMC10370708.
108: Li H, Xu Y, Li L. Efficacy and Safety of Orthokeratology Lenses for the
Management of Adolescent Myopia: A Meta-Analysis. Altern Ther Health Med. 2023
Oct;29(7):172-177. PMID: 37471657.
109: Lv H, Liu Z, Li J, Wang Y, Tseng Y, Li X. Long-Term Efficacy of
Orthokeratology to Control Myopia Progression. Eye Contact Lens. 2023 Sep
1;49(9):399-403. doi: 10.1097/ICL.0000000000001017. Epub 2023 Jul 20. PMID:
37471255; PMCID: PMC10442101.
110: Lian Y, Lu W, Xu A, Chen R, Lu Q, Zhou W, Mei L, Jin W. The correlation
between modifications to corneal topography and changes in retinal vascular
density and retinal thickness in myopic children after undergoing
orthokeratology. Front Med (Lausanne). 2023 Jun 29;10:1166429. doi:
10.3389/fmed.2023.1166429. PMID: 37457580; PMCID: PMC10338965.
111: Li L, Lai T, Zou J, Guo L, Lin Z, Lin J, Xue Y. Effects of orthokeratology
lenses on tear film and tarsal glands and control of unilateral myopia in
children. Front Cell Dev Biol. 2023 Jun 21;11:1197262. doi:
10.3389/fcell.2023.1197262. PMID: 37427374; PMCID: PMC10325714.
112: Mahmoud O, Andrews C, Soeken T, Nallasamy S, Nallasamy N. Optical Biometry
Changes Throughout Childhood and Adolescence in Patients Wearing Ortho-K Lenses.
Clin Ophthalmol. 2023 Jul 4;17:1919-1927. doi: 10.2147/OPTH.S413810. PMID:
37425028; PMCID: PMC10329451.
113: Du L, Chen J, Ding L, Wang J, Yang J, Xie H, Xu X, He X, Zhu M. Add-On
Effect of 0.01% Atropine in Orthokeratology Wearers for Myopia Control in
Children: A 2-Year Retrospective Study. Ophthalmol Ther. 2023
Oct;12(5):2557-2568. doi: 10.1007/s40123-023-00755-4. Epub 2023 Jul 5. PMID:
37405578; PMCID: PMC10442030.
114: Guo B, Cho P, Cheung SW, Kojima R, Vincent S. Optical changes and
association with axial elongation in children wearing orthokeratology lenses of
different back optic zone diameter. Eye Vis (Lond). 2023 Jul 1;10(1):25. doi:
10.1186/s40662-023-00344-3. PMID: 37391828; PMCID: PMC10314406.
115: Bullimore MA, Liu M. Efficacy of the Euclid orthokeratology lens in slowing
axial elongation. Cont Lens Anterior Eye. 2023 Oct;46(5):101875. doi:
10.1016/j.clae.2023.101875. Epub 2023 Jun 24. PMID: 37365049.
116: Lai L, Trier K, Cui DM. Role of 7-methylxanthine in myopia prevention and
control: a mini-review. Int J Ophthalmol. 2023 Jun 18;16(6):969-976. doi:
10.18240/ijo.2023.06.21. PMID: 37332548; PMCID: PMC10250936.
117: Wu H, Peng T, Zhou W, Huang Z, Li H, Wang T, Zhang J, Zhang K, Li H, Zhao
Y, Qu J, Lu F, Zhou X, Jiang J. Choroidal vasculature act as predictive
biomarkers of long-term ocular elongation in myopic children treated with
orthokeratology: a prospective cohort study. Eye Vis (Lond). 2023 Jun
6;10(1):27. doi: 10.1186/s40662-023-00345-2. PMID: 37280689; PMCID: PMC10242233.
118: Zhang B, Liao H, Xiong F, Mao T, Wu L, Li Y, Xiong C. Home confinement's
impact on myopia control by using orthokeratology in school-aged children. BMC
Ophthalmol. 2023 Jun 5;23(1):249. doi: 10.1186/s12886-023-02969-3. PMID:
37271801; PMCID: PMC10239673.
119: Tan Q, Cho P, Ng ALK, Cheng GPM, Woo VCP, Vincent SJ. Retinal image quality
in myopic children undergoing orthokeratology alone or combined with 0.01%
atropine. Eye Vis (Lond). 2023 Jun 1;10(1):21. doi: 10.1186/s40662-023-00339-0.
PMID: 37259133; PMCID: PMC10234000.
120: Jeong SK. From contact lens to 'Dream Lens' - Cultural History of Vision
Correction Technology. Uisahak. 2023 Apr;32(1):81-111. English. doi:
10.13081/kjmh.2023.32.81. PMID: 37257925; PMCID: PMC10521874.
121: Tang WT, Zhang L, Zhang HD, Li SB, Liang H. Orthokeratology with increased
compression factor in adolescent myopia control: a 2-year prospective randomized
clinical trial. Int J Ophthalmol. 2023 May 18;16(5):770-777. doi:
10.18240/ijo.2023.05.15. PMID: 37206173; PMCID: PMC10172086.
122: Choi KY, Cheung JKW, Wong GTK, Li PH, Chan SSH, Lam TC, Chan HHL. Myopia
Control Efficacy and Long-Term Safety of a Novel Orthokeratology Lens (MESOK
Study)-A Randomized Controlled Clinical Trial Combining Clinical and Tear
Proteomics Data. J Clin Med. 2023 Apr 29;12(9):3210. doi: 10.3390/jcm12093210.
PMID: 37176650; PMCID: PMC10179394.
123: Huang Z, Zhao W, Mao YZ, Hu S, Du CX. Factors influencing axial elongation
in myopic children using overnight orthokeratology. Sci Rep. 2023 May
12;13(1):7715. doi: 10.1038/s41598-023-34580-3. PMID: 37173387; PMCID:
PMC10182044.
124: Hou J, Zhang N, Li X, Wang Z, Wang J. The Effects of Spectacles or
Orthokeratology on the Tear Film in Children and Adolescents. Ophthalmol Ther.
2023 Aug;12(4):1913-1927. doi: 10.1007/s40123-023-00719-8. Epub 2023 May 4.
PMID: 37140875; PMCID: PMC10287878.
125: Wolffsohn JS, Whayeb Y, Logan NS, Weng R; International Myopia Institute
Ambassador Group*. IMI-Global Trends in Myopia Management Attitudes and
Strategies in Clinical Practice-2022 Update. Invest Ophthalmol Vis Sci. 2023 May
1;64(6):6. doi: 10.1167/iovs.64.6.6. Erratum in: Invest Ophthalmol Vis Sci. 2023
May 1;64(5):12. doi: 10.1167/iovs.64.5.12. PMID: 37126357; PMCID: PMC10155870.
126: Sankaridurg P, Berntsen DA, Bullimore MA, Cho P, Flitcroft I, Gawne TJ,
Gifford KL, Jong M, Kang P, Ostrin LA, Santodomingo-Rubido J, Wildsoet C,
Wolffsohn JS. IMI 2023 Digest. Invest Ophthalmol Vis Sci. 2023 May 1;64(6):7.
doi: 10.1167/iovs.64.6.7. Erratum in: Invest Ophthalmol Vis Sci. 2023 Jul
3;64(10):34. doi: 10.1167/iovs.64.10.34. PMID: 37126356; PMCID: PMC10155872.
127: Lu W, Song G, Zhang Y, Lian Y, Ma K, Lu Q, Jin Y, Zhao Y, Zhang S, Lv F,
Jin W. The effect of orthokeratology lenses on optical quality and visual
function in children. Front Neurosci. 2023 Apr 14;17:1142524. doi:
10.3389/fnins.2023.1142524. PMID: 37123367; PMCID: PMC10140410.
128: Zhang G, Jiang J, Qu C. Myopia prevention and control in children: a
systematic review and network meta-analysis. Eye (Lond). 2023
Nov;37(16):3461-3469. doi: 10.1038/s41433-023-02534-8. Epub 2023 Apr 27. PMID:
37106147; PMCID: PMC10630522.
129: Kassem A. Myopia progression in children and adolescents: impact of
COVID-19 pandemic and current and future control strategies. Acta Biomed. 2023
Apr 24;94(2):e2023002. doi: 10.23750/abm.v94i2.14397. PMID: 37092614; PMCID:
PMC10210551.
130: Hu P, Tao L. Comparison of the clinical effects between digital
keratoplasty and traditional orthokeratology lenses for correcting juvenile
myopia. Technol Health Care. 2023;31(6):2021-2029. doi: 10.3233/THC-220893.
PMID: 37092197; PMCID: PMC10741369.
131: Yang T, Hu R, Tian W, Lin Y, Lu Y, Liang X, Zheng D, Zhang X. Comparison of
Functional Vision and Eye-Related Quality of Life between Myopic Children
Treated with Orthokeratology and Single-Vision Spectacles in Southern China. J
Ophthalmol. 2023 Apr 8;2023:7437935. doi: 10.1155/2023/7437935. PMID: 37089412;
PMCID: PMC10118901.
132: Zhao W, Wang J, Chen J, Xie H, Yang J, Liu K, He X, Xu X. The rate of
orthokeratology lens use and associated factors in 33,280 children and
adolescents with myopia: a cross-sectional study from Shanghai. Eye (Lond). 2023
Oct;37(15):3263-3270. doi: 10.1038/s41433-023-02503-1. Epub 2023 Apr 12. PMID:
37046055; PMCID: PMC10564736.
133: Wang Z, Wang Z, Meng Y, Wang P, Yibulayin S, Jiang B, Bian X, Gao T, Yan Z.
Posterior corneal elevation changes during 12 month of overnight
orthokeratology. Heliyon. 2023 Mar 28;9(4):e14887. doi:
10.1016/j.heliyon.2023.e14887. PMID: 37025848; PMCID: PMC10070639.
134: Xiao L, Lv J, Zhu X, Sun X, Dong W, Fang C. Therapeutic effects of
orthokeratology lens combined with 0.01% atropine eye drops on juvenile myopia.
Arq Bras Oftalmol. 2023 Apr 3:S0004-27492023005001207. doi:
10.5935/0004-2749.2022-0247. Epub ahead of print. PMID: 37018826.
135: Ruan J, Zhang Y, Chen Y. Influence of overnight orthokeratology on tear
film and meibomian glands in myopic children: a prospective study. BMC
Ophthalmol. 2023 Apr 3;23(1):136. doi: 10.1186/s12886-023-02883-8. PMID:
37013481; PMCID: PMC10071684.
136: Xiao L, Lv J, Zhu X, Sun X, Dong W, Fang C. Therapeutic effects of
orthokeratology lens combined with 0.01% atropine eye drops on juvenile myopia.
Arq Bras Oftalmol. 2023 Apr 3;87(5):e20220247. doi: 10.5935/0004-2749.2022-0247.
PMID: 39298733; PMCID: PMC11626931.
137: Xiang K, Chen J, Zhao W, Zhu Z, Ding L, Bulloch G, Du L, Xu X, Zhu M, He X.
Changes of corneal biomechanics in children using orthokeratology and their
roles in predicting axial length progression-A prospective 2-year study. Acta
Ophthalmol. 2023 Nov;101(7):755-765. doi: 10.1111/aos.15662. Epub 2023 Mar 23.
PMID: 36959685.
138: Chen X, Xiong Y, Qi X, Liu L. Nasal-temporal asymmetric changes in retinal
peripheral refractive error in myopic adolescents induced by overnight
orthokeratology lenses. Front Neurol. 2023 Mar 2;13:1006112. doi:
10.3389/fneur.2022.1006112. PMID: 36938370; PMCID: PMC10017440.
139: Meng QY, Miao ZQ, Liang ST, Wu X, Wang LJ, Zhao MW, Guo LL. Choroidal
thickness, myopia, and myopia control interventions in children: a Meta-analysis
and systemic review. Int J Ophthalmol. 2023 Mar 18;16(3):453-464. doi:
10.18240/ijo.2023.03.17. PMID: 36935799; PMCID: PMC10009593.
140: Chang LC, Sun CC, Liao LL. Orthokeratology compliance, digital device use,
and myopia control among children with myopia during COVID-19 home confinement
in Taiwan. Indian J Ophthalmol. 2023 Mar;71(3):962-966. doi:
10.4103/ijo.IJO_1384_22. PMID: 36872718; PMCID: PMC10229948.
141: Chaurasiya RK, Sutar S, Gupta A, Pandey R, Agarwal P. Knowledge, attitude,
and practice of childhood myopia among Indian optometrists: A questionnaire-
based study. Indian J Ophthalmol. 2023 Mar;71(3):951-956. doi:
10.4103/IJO.IJO_2660_22. PMID: 36872716; PMCID: PMC10229990.
142: Li T, Zuo X, Zhang T, Liu L, Wang Z, Han L, Liu H, Wang Z. Patients with
Intermittent Exotropia and Exophoria Exhibit Non-aggravated Lens Decentration
After Orthokeratology Application: The Nanjing Strabismus Cohort. Ophthalmol
Ther. 2023 Jun;12(3):1535-1545. doi: 10.1007/s40123-023-00685-1. Epub 2023 Mar
- PMID: 36856977; PMCID: PMC10164214.
143: Queirós A, Beaujeux P, Bloise L, Chaume A, Colliot JP, Proust DP, Rossi P,
Tritsch B, Crinon DB, Pauné J. Assessment of the Clinical Effectiveness of DRL
Orthokeratology Lenses vs. Single-Vision Spectacles in Controlling the
Progression of Myopia in Children and Teenagers: 2 Year Retrospective Study.
Children (Basel). 2023 Feb 18;10(2):402. doi: 10.3390/children10020402. PMID:
36832531; PMCID: PMC9955086.
144: Lawrenson JG, Shah R, Huntjens B, Downie LE, Virgili G, Dhakal R,
Verkicharla PK, Li D, Mavi S, Kernohan A, Li T, Walline JJ. Interventions for
myopia control in children: a living systematic review and network meta-
analysis. Cochrane Database Syst Rev. 2023 Feb 16;2(2):CD014758. doi:
10.1002/14651858.CD014758.pub2. PMID: 36809645; PMCID: PMC9933422.
145: Erdinest N, London N, Lavy I, Berkow D, Landau D, Morad Y, Levinger N.
Peripheral Defocus and Myopia Management: A Mini-Review. Korean J Ophthalmol.
2023 Feb;37(1):70-81. doi: 10.3341/kjo.2022.0125. Epub 2023 Feb 3. PMID:
36796348; PMCID: PMC9935061.
146: Zhang X, Zhou Y, Wang Y, Du W, Yang J. Trend of myopia through different
interventions from 2010 to 2050: Findings from Eastern Chinese student
surveillance study. Front Med (Lausanne). 2023 Jan 18;9:1069649. doi:
10.3389/fmed.2022.1069649. PMID: 36743682; PMCID: PMC9889364.
147: Tang T, Li X, Chen S, Xu Q, Zhao H, Wang K, Li Y, Zhao M. Long-term follow-
up of changes in ocular biometric parameters in orthokeratology lens wearers
with relatively large-scale axial length reduction. Eye Vis (Lond). 2023 Feb
2;10(1):6. doi: 10.1186/s40662-022-00324-z. PMID: 36726171; PMCID: PMC9893609.
148: Tomiyama ES, Richdale K. Clinical Outcomes of a Randomized Trial with
Contact Lenses for Astigmatic Myopia Management. Optom Vis Sci. 2023 Jan
1;100(1):9-16. doi: 10.1097/OPX.0000000000001969. Epub 2022 Dec 6. PMID:
36705710; PMCID: PMC9889106.
149: Fang J, Zheng Y, Mou H, Shi M, Yu W, Du C. Machine learning for predicting
the treatment effect of orthokeratology in children. Front Pediatr. 2023 Jan
6;10:1057863. doi: 10.3389/fped.2022.1057863. PMID: 36683821; PMCID: PMC9853046.
150: Liu T, Ma W, Wang J, Yang B, Dong G, Chen C, Wang X, Liu L. The effects of
base curve aspheric orthokeratology lenses on corneal topography and peripheral
refraction: A randomized prospective trial. Cont Lens Anterior Eye. 2023
Jun;46(3):101814. doi: 10.1016/j.clae.2023.101814. Epub 2023 Jan 20. PMID:
36681621.
151: Ma W, Yang B, Wang X, Liu LQ. [Observational Comparison of the Safety and
Effectiveness of Myopic Children Wearing Defocus Incorporated Soft Contact
Lenses or Orthokeratology Lenses]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2023
Jan;54(1):181-185. Chinese. doi: 10.12182/20230160207. PMID: 36647664; PMCID:
PMC10409022.
152: Su B, Bao Z, Guo Y, Zheng H, Zhou J, Lu F, Jiang J. Changes in Shape
Discrimination Sensitivity Under Glare Conditions After Orthokeratology in
Myopic Children: A Prospective Study. Invest Ophthalmol Vis Sci. 2023 Jan
3;64(1):6. doi: 10.1167/iovs.64.1.6. PMID: 36626175; PMCID: PMC9838587.
153: Zhu Q, Yin J, Li X, Hu M, Xue L, Zhang J, Zhou Y, Zhang X, Zhu Y, Zhong H.
Effects of Long-Term Wear and Discontinuation of Orthokeratology Lenses on the
Eyeball Parameters in Children with Myopia. Int J Med Sci. 2023 Jan
1;20(1):50-56. doi: 10.7150/ijms.79496. PMID: 36619230; PMCID: PMC9812803.
154: Hui W, Xiao-Feng H, Song-Guo L, Jing-Jing W, Xuan H, Yong T. Application of
orthokeratology on myopia control and its effect on ocular surface and meibomian
gland function in Chinese myopic adolescents. Front Med (Lausanne). 2022 Dec
8;9:979334. doi: 10.3389/fmed.2022.979334. PMID: 36569150; PMCID: PMC9772008.
155: Chen Y, Zheng C, Zhu R, Dong L, Cen J, Yu J, Zhao P, Kang X. Assessing the
efficacy of myopia control in monocular orthokeratology treated unilateral
myopic children. BMC Ophthalmol. 2022 Dec 19;22(1):499. doi:
10.1186/s12886-022-02693-4. PMID: 36536320; PMCID: PMC9764705.
156: Yu S, Du L, Ji N, Li B, Pang X, Li X, Ma N, Huang C, Fu A. Combination of
orthokeratology lens with 0.01% atropine in slowing axial elongation in children
with myopia: a randomized double-blinded clinical trial. BMC Ophthalmol. 2022
Nov 15;22(1):438. doi: 10.1186/s12886-022-02635-0. PMID: 36380280; PMCID:
PMC9665032.
157: Lin W, Li N, Lu K, Li Z, Zhuo X, Wei R. The relationship between baseline
axial length and axial elongation in myopic children undergoing orthokeratology.
Ophthalmic Physiol Opt. 2023 Jan;43(1):122-131. doi: 10.1111/opo.13070. Epub
2022 Nov 15. PMID: 36377631; PMCID: PMC10100030.
158: Wu TY, Yeh LK, Su CY, Huang PH, Lai CC, Fang HW. The Effect of
Polysaccharides on Preventing Proteins and Cholesterol from Being Adsorbed on
the Surface of Orthokeratology Lenses. Polymers (Basel). 2022 Oct
26;14(21):4542. doi: 10.3390/polym14214542. PMID: 36365536; PMCID: PMC9658088.
159: Zhang S, Zhang H, Li L, Yang X, Li S, Li X. Effect of treatment zone
decentration on axial length growth after orthokeratology. Front Neurosci. 2022
Oct 20;16:986364. doi: 10.3389/fnins.2022.986364. PMID: 36340764; PMCID:
PMC9630831.
160: Mohd-Ali B, Low YC, Mohamad Shahimin M, Arif N, Abdul-Hamid H, Wan Abdul-
Halim WH, Mohidin N. Comparison of vision-related quality of life between
wearing Orthokeratology lenses and spectacles in myopic children living in Kuala
Lumpur. Cont Lens Anterior Eye. 2023 Feb;46(1):101774. doi:
10.1016/j.clae.2022.101774. Epub 2022 Oct 29. PMID: 36319519.
161: Hahn IK, Lee D, Lee DH, Lee H, Tchah H, Kim JY. Serially Checked Spherical
Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in
Children. J Pers Med. 2022 Oct 10;12(10):1686. doi: 10.3390/jpm12101686. PMID:
36294825; PMCID: PMC9604799.
162: Zhu Q, Zhao Q. Short-term effect of orthokeratology lens wear on choroidal
blood flow in children with low and moderate myopia. Sci Rep. 2022 Oct
21;12(1):17653. doi: 10.1038/s41598-022-21594-6. PMID: 36271275; PMCID:
PMC9586976.
163: Li C, Zeng L, Zhou J, Wang B, Chen Z. To Achieve a Bullseye: Factors
Related to Corneal Refractive Therapy Orthokeratology Lens Toricity. J Clin Med.
2022 Sep 24;11(19):5635. doi: 10.3390/jcm11195635. PMID: 36233502; PMCID:
PMC9572783.
164: Du LF, He F, Tan HX, Gao N, Song WQ, Luo YX. Comparisons of Three Methods
for Myopia Control in Adolescents. J Ophthalmol. 2022 Sep 29;2022:9920002. doi:
10.1155/2022/9920002. PMID: 36211597; PMCID: PMC9536993.
165: López García Rosuero M, Arranz Bombin A, Romero R, Hornero R, Martin R.
Clinical tool to measure fluorescein patterns in orthokeratology. PeerJ. 2022
Sep 23;10:e14068. doi: 10.7717/peerj.14068. PMID: 36172500; PMCID: PMC9512001.
166: Wang XQ, Chen M, Zeng LZ, Liu LQ. Investigation of retinal microvasculature
and choriocapillaris in adolescent myopic patients with astigmatism undergoing
orthokeratology. BMC Ophthalmol. 2022 Sep 23;22(1):382. doi:
10.1186/s12886-022-02572-y. PMID: 36151522; PMCID: PMC9508713.
167: Xie C, Wei R. Long-term changes in the ocular surface during
orthokeratology lens wear and their correlations with ocular discomfort
symptoms. Cont Lens Anterior Eye. 2023 Feb;46(1):101757. doi:
10.1016/j.clae.2022.101757. Epub 2022 Sep 20. PMID: 36137919.
168: Li T, Chen Z, She M, Zhou X. Relative peripheral refraction in myopic
children wearing orthokeratology lenses using a novel multispectral refraction
topographer. Clin Exp Optom. 2023 Sep;106(7):746-751. doi:
10.1080/08164622.2022.2113330. Epub 2022 Sep 20. PMID: 36126304.
169: Lin J, An D, Lu Y, Yan D. Correlation between ocular residual astigmatism
and anterior corneal astigmatism in children with low and moderate myopia. BMC
Ophthalmol. 2022 Sep 19;22(1):374. doi: 10.1186/s12886-022-02560-2. PMID:
36123634; PMCID: PMC9487078.
170: Li N, Lin W, Zhang K, Li B, Su Q, Du B, Wei R. The effect of back optic
zone diameter on relative corneal refractive power distribution and corneal
higher-order aberrations in orthokeratology. Cont Lens Anterior Eye. 2023
Feb;46(1):101755. doi: 10.1016/j.clae.2022.101755. Epub 2022 Sep 7. PMID:
36088210.
171: Toshida H, Sadamatsu Y. A Case of Herpetic Keratitis in an Orthokeratology
Contact Lens Wearer. Cureus. 2022 Jul 28;14(7):e27388. doi:
10.7759/cureus.27388. PMID: 36046321; PMCID: PMC9419115.
172: Fan Y, Zuo L, Ma J, Peng Z, Li Y, Wang K, Zhao M. An investigation into the
causes of abnormal waste of Ortho-K lenses. Front Public Health. 2022 Aug
15;10:981573. doi: 10.3389/fpubh.2022.981573. PMID: 36045728; PMCID: PMC9421076.
173: Zhu MJ, Ding L, Du LL, Chen J, He XG, Li SS, Zou HD. Photopic pupil size
change in myopic orthokeratology and its influence on axial length elongation.
Int J Ophthalmol. 2022 Aug 18;15(8):1322-1330. doi: 10.18240/ijo.2022.08.15.
PMID: 36017053; PMCID: PMC9358181.
174: Chen X, Li Q, Liu L. Personalized Predictive Modeling of Subfoveal
Choroidal Thickness Changes for Myopic Adolescents after Overnight
Orthokeratology. J Pers Med. 2022 Aug 15;12(8):1316. doi: 10.3390/jpm12081316.
PMID: 36013265; PMCID: PMC9410041.
175: Zhao C, Cai C, Dai H, Zhang J. Effect of the combined application of
orthokeratology and single-vision spectacles on slowing the progression of high
myopia: A systematic review and meta-analysis. Medicine (Baltimore). 2022 Aug
19;101(33):e30178. doi: 10.1097/MD.0000000000030178. PMID: 35984116; PMCID:
PMC9388007.
176: Jakobsen TM, Søndergaard AP, Møller F. Peripheral refraction, relative
peripheral refraction, and axial growth: 18-month data from the randomised
study-Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses
(CONTROL study). Acta Ophthalmol. 2023 Feb;101(1):e69-e80. doi:
10.1111/aos.15217. Epub 2022 Aug 8. PMID: 35941831; PMCID: PMC10087546.
177: Bogdănici CM, Niagu IA, Bejan A, Bogdănici ȘT, Sălăvăstru S. Night contact
lenses used for myopia - personal experience. Rom J Ophthalmol. 2022 Apr-
Jun;66(2):112-117. doi: 10.22336/rjo.2022.23. PMID: 35935080; PMCID: PMC9289778.
178: Cho P, Boost MV, Cheung SW. Ocular signs and symptoms of orthokeratology
patients associated with povidone iodine-based disinfecting solution. Cont Lens
Anterior Eye. 2023 Feb;46(1):101742. doi: 10.1016/j.clae.2022.101742. Epub 2022
Aug 2. PMID: 35931598.
179: Nieto-Bona A, Porras-Ángel P, Ayllón-Gordillo AE, Carracedo G, Piñero DP.
Short and long term corneal biomechanical analysis after overnight
orthokeratology. Int J Ophthalmol. 2022 Jul 18;15(7):1128-1134. doi:
10.18240/ijo.2022.07.13. PMID: 35919327; PMCID: PMC9318079.
180: Dhiman R, Rakheja V, Gupta V, Saxena R. Current concepts in the management
of childhood myopia. Indian J Ophthalmol. 2022 Aug;70(8):2800-2815. doi:
10.4103/ijo.IJO_2098_21. PMID: 35918919; PMCID: PMC9672783.
181: Mohd-Ali B, Low YC, Shahimin MM, Arif N, Abdul Hamid H, Wan Abdul Halim WH,
Mokri SS, Baseri Huddin A, Mohidin N. Ocular Dimensions, Refractive Error, and
Body Stature in Young Chinese Children with Myopia in Kuala Lumpur, Malaysia.
Clin Optom (Auckl). 2022 Jul 22;14:101-110. doi: 10.2147/OPTO.S368672. PMID:
35910505; PMCID: PMC9326897.
182: Wu SY, Wang JH, Chiu CJ. Assessment of Satisfaction, Compliance and Side
Effects among Long-Term Orthokeratology Wearers. J Clin Med. 2022 Jul
15;11(14):4126. doi: 10.3390/jcm11144126. PMID: 35887890; PMCID: PMC9321806.
183: Ma L, Xu M, Wang J, Niu X. Analysis of the Reasons for the Discontinuation
of Orthokeratology Lens Use: A 4-Year Retrospective Study. Eye Contact Lens.
2022 Aug 1;48(8):335-339. doi: 10.1097/ICL.0000000000000910. Epub 2022 Jun 3.
PMID: 35877184; PMCID: PMC9298146.
184: Fang J, Huang Z, Long Y, Zhu M, Wu Q, Chen X, Xv W, Du C. Retardation of
Myopia by Multifocal Soft Contact Lens and Orthokeratology: A 1-Year Randomized
Clinical Trial. Eye Contact Lens. 2022 Aug 1;48(8):328-334. doi:
10.1097/ICL.0000000000000911. Epub 2022 Jun 3. PMID: 35877183; PMCID:
PMC9298149.
185: Tomiyama ES, Berntsen DA, Richdale K. Peripheral Refraction With Toric
Orthokeratology and Soft Toric Multifocal Contact Lenses in Myopic Astigmatic
Eyes. Invest Ophthalmol Vis Sci. 2022 Jul 8;63(8):10. doi: 10.1167/iovs.63.8.10.
PMID: 35819285; PMCID: PMC9287617.
186: Fan Y, Li Y, Wang K, Qu J, Zhao M. Weighted Zernike defocus coefficient of
treatment zone is a meaningful indicator for myopia control efficacy of Ortho-K
lenses. Eye Vis (Lond). 2022 Jul 1;9(1):24. doi: 10.1186/s40662-022-00296-0.
PMID: 35773712; PMCID: PMC9248179.
187: Chen M, Liu X, Xie Z, Wang P, Zheng M, Mao X. The Effect of Corneal
Refractive Power Area Changes on Myopia Progression during Orthokeratology. J
Ophthalmol. 2022 Jun 16;2022:5530162. doi: 10.1155/2022/5530162. PMID: 35757379;
PMCID: PMC9225887.
188: Russo A, Boldini A, Romano D, Mazza G, Bignotti S, Morescalchi F, Semeraro
F. Myopia: Mechanisms and Strategies to Slow Down Its Progression. J Ophthalmol.
2022 Jun 14;2022:1004977. doi: 10.1155/2022/1004977. PMID: 35747583; PMCID:
PMC9213207.
189: Li X, Xu J, Hong J, Yao J. The relationship between corneal biomechanical
parameters and treatment outcomes of orthokeratology lenses. BMC Ophthalmol.
2022 Jun 11;22(1):262. doi: 10.1186/s12886-022-02480-1. PMID: 35690754; PMCID:
PMC9188053.
190: Tsai HR, Wang JH, Huang HK, Chen TL, Chen PW, Chiu CJ. Efficacy of
atropine, orthokeratology, and combined atropine with orthokeratology for
childhood myopia: A systematic review and network meta-analysis. J Formos Med
Assoc. 2022 Dec;121(12):2490-2500. doi: 10.1016/j.jfma.2022.05.005. Epub 2022
Jun 7. PMID: 35688780.
191: Qu D, Zhou Y. Post-Ortho-K Corneal Epithelium Changes in Myopic Eyes. Dis
Markers. 2022 May 29;2022:3361172. doi: 10.1155/2022/3361172. PMID: 35677633;
PMCID: PMC9168212.
192: Gao Y, Yu Y. The effect of 0.01% atropine on ocular axial elongation for
myopia children: A protocol for systematic review and meta-analysis. Medicine
(Baltimore). 2022 Jun 3;101(22):e29409. doi: 10.1097/MD.0000000000029409. PMID:
35665735; PMCID: PMC9276353.
193: Wang A, Yang C, Shen L, Wang J, Zhang Z, Yang W. Axial length shortening
after orthokeratology and its relationship with myopic control. BMC Ophthalmol.
2022 Jun 3;22(1):243. doi: 10.1186/s12886-022-02461-4. PMID: 35659643; PMCID:
PMC9164339.
194: Tan Q, Ng AL, Cheng GP, Woo VC, Cho P. Combined 0.01% atropine with
orthokeratology in childhood myopia control (AOK) study: A 2-year randomized
clinical trial. Cont Lens Anterior Eye. 2023 Feb;46(1):101723. doi:
10.1016/j.clae.2022.101723. Epub 2022 May 31. PMID: 35654683.
195: Shinojima A, Negishi K, Tsubota K, Kurihara T. Multiple Factors Causing
Myopia and the Possible Treatments: A Mini Review. Front Public Health. 2022 May
10;10:897600. doi: 10.3389/fpubh.2022.897600. PMID: 35619815; PMCID: PMC9127355.
196: Li X, Huang Y, Zhang J, Ding C, Chen Y, Chen H, Bao J. Treatment zone
decentration promotes retinal reshaping in Chinese myopic children wearing
orthokeratology lenses. Ophthalmic Physiol Opt. 2022 Sep;42(5):1124-1132. doi:
10.1111/opo.12996. Epub 2022 May 22. PMID: 35598145; PMCID: PMC9544447.
197: Yu Y, Liu J. The effect of 0.01% atropine and orthokeratology on ocular
axial elongation for myopia children: A meta-analysis (a PRISMA-compliant
article). Medicine (Baltimore). 2022 May 6;101(18):e29191. doi:
10.1097/MD.0000000000029191. PMID: 35550467; PMCID: PMC9276445.
198: Duan C, Feng F, Liu L, Qu F, Yang Z, Zhang H, Jiang C. Group-Based
Trajectory Modeling to Identify Factors Influencing the Development of Myopia in
Patients Receiving Orthokeratology. Int J Gen Med. 2022 Apr 18;15:4151-4162.
doi: 10.2147/IJGM.S355181. PMID: 35465306; PMCID: PMC9030392.
199: Rubin A, Evans T, Hasrod N. Dioptric power and refractive behaviour: a
review of methods and applications. BMJ Open Ophthalmol. 2022 Apr
1;7(1):e000929. doi: 10.1136/bmjophth-2021-000929. PMID: 35452207; PMCID:
PMC8977790.
200: Lin W, Gu T, Bi H, Du B, Zhang B, Wei R. The treatment zone decentration
and corneal refractive profile changes in children undergoing orthokeratology
treatment. BMC Ophthalmol. 2022 Apr 18;22(1):177. doi:
10.1186/s12886-022-02396-w. PMID: 35436922; PMCID: PMC9016930.
201: Lu W, Ning R, Diao K, Ding Y, Chen R, Zhou L, Lian Y, McAlinden C, Sanders
FWB, Xia F, Huang J, Jin W. Comparison of Two Main Orthokeratology Lens Designs
in Efficacy and Safety for Myopia Control. Front Med (Lausanne). 2022 Apr
1;9:798314. doi: 10.3389/fmed.2022.798314. PMID: 35433737; PMCID: PMC9010613.
202: Chuang YH, Wang YC, Yen CY, Lin CC, Chen CC. Case Series: Unusual
Presentation of Acanthamoeba Coinfection in the Cornea. Optom Vis Sci. 2022 Jul
1;99(7):605-611. doi: 10.1097/OPX.0000000000001906. Epub 2022 Apr 13. PMID:
35413026; PMCID: PMC9296050.
203: Martínez-Pérez C, Villa-Collar C, Santodomingo-Rubido J, Wolffsohn JS.
Strategies and attitudes on the management of myopia in clinical practice in
Spain. J Optom. 2023 Jan-Mar;16(1):64-73. doi: 10.1016/j.optom.2022.03.002. Epub
2022 Mar 29. PMID: 35365431; PMCID: PMC9811371.
204: Lee J, Hwang G, Ha M, Kim HS, Han K, Na KS. Evaluation of the meibomian
glands using the tear interferometer wearing orthokeratology lenses. BMC
Ophthalmol. 2022 Mar 24;22(1):133. doi: 10.1186/s12886-022-02365-3. PMID:
35331178; PMCID: PMC8951697.
205: Lian RR, Sella R, Chen S, Afshari NA. Changes in corneal tomography
following corneal refractive therapy discontinuation in a patient with history
of long-term use. Am J Ophthalmol Case Rep. 2022 Mar 8;26:101450. doi:
10.1016/j.ajoc.2022.101450. PMID: 35295195; PMCID: PMC8918721.
206: Fricke TR, Sankaridurg P, Naduvilath T, Resnikoff S, Tahhan N, He M, Frick
KD. Establishing a method to estimate the effect of antimyopia management
options on lifetime cost of myopia. Br J Ophthalmol. 2023 Aug;107(8):1043-1050.
doi: 10.1136/bjophthalmol-2021-320318. Epub 2022 Mar 9. PMID: 35264328; PMCID:
PMC10359589.
207: Yu H, Yuan Y, Wu W, Zeng W, Tong L, Zhang Y, Feng Y. Orthokeratology Lens
Wear for 2 Years in Children Did Not Alter Tear Film Lipid Thickness by Non-
Invasive Interferometry. Front Med (Lausanne). 2022 Feb 10;9:821106. doi:
10.3389/fmed.2022.821106. PMID: 35223920; PMCID: PMC8866645.
208: Kuo YK, Chen YT, Chen HM, Wu PC, Sun CC, Yeung L, Lin KK, Chen HC, Chuang
LH, Lai CC, Chen YH, Liu CF. Efficacy of Myopia Control and Distribution of
Corneal Epithelial Thickness in Children Treated with Orthokeratology Assessed
Using Optical Coherence Tomography. J Pers Med. 2022 Feb 14;12(2):278. doi:
10.3390/jpm12020278. PMID: 35207766; PMCID: PMC8875657.
209: Chen Z, Wang J, Jiang J, Yang B, Cho P. The Impact of Antibiotic Usage
Guidelines, Developed and Disseminated through Internet, on the Knowledge,
Attitude and Prescribing Habits of Orthokeratology Contact Lens Practitioners in
China. Antibiotics (Basel). 2022 Jan 29;11(2):179. doi:
10.3390/antibiotics11020179. PMID: 35203782; PMCID: PMC8868172.
210: Huang Y, Li X, Ding C, Chen Y, Mao X, Chen H, Bao J. Comparison of
peripheral refraction and higher-order aberrations between orthokeratology and
multifocal soft contact lens designed with highly addition. Graefes Arch Clin
Exp Ophthalmol. 2022 May;260(5):1755-1762. doi: 10.1007/s00417-022-05573-1. Epub
2022 Feb 22. PMID: 35192031; PMCID: PMC9007788.
211: Sun L, Li ZX, Chen Y, He ZQ, Song HX. The effect of orthokeratology
treatment zone decentration on myopia progression. BMC Ophthalmol. 2022 Feb
15;22(1):76. doi: 10.1186/s12886-022-02310-4. PMID: 35164702; PMCID: PMC8845411.
212: Zhang Z, Chen Z, Chen Z, Zhou J, Zeng L, Xue F, Qu X, Zhou X. Change in
Corneal Power Distribution in Orthokeratology: A Predictor for the Change in
Axial Length. Transl Vis Sci Technol. 2022 Feb 1;11(2):18. doi:
10.1167/tvst.11.2.18. PMID: 35142785; PMCID: PMC8842419.
213: Qi Y, Liu L, Li Y, Zhang F. Factors associated with faster axial elongation
after orthokeratology treatment. BMC Ophthalmol. 2022 Feb 8;22(1):62. doi:
10.1186/s12886-022-02294-1. PMID: 35135507; PMCID: PMC8826659.
214: Zhao L, Jing L, Li J, Du X. Changes in corneal densitometry after long-term
orthokeratology for myopia and short-term discontinuation. PLoS One. 2022 Feb
4;17(2):e0263121. doi: 10.1371/journal.pone.0263121. PMID: 35120161; PMCID:
PMC8815901.
215: Tao Z, Wang J, Zhu M, Lin Z, Zhao J, Tang Y, Deng H. Does Orthokeratology
Wearing Affect the Tear Quality of Children? Front Pediatr. 2022 Jan
18;9:773484. doi: 10.3389/fped.2021.773484. PMID: 35118029; PMCID: PMC8804288.
216: Zhang KY, Lyu HB, Yang JR, Qiu WQ. Efficacy of long-term orthokeratology
treatment in children with anisometropic myopia. Int J Ophthalmol. 2022 Jan
18;15(1):113-118. doi: 10.18240/ijo.2022.01.17. PMID: 35047365; PMCID:
PMC8720357.
217: Boost MV, Cheung SW, Cho P. Investigation of effects of orthokeratology and
povidone iodine disinfecting solution on the conjunctival microbiome using
MALDI-TOF mass spectrometry. Adv Ophthalmol Pract Res. 2022 Jan 20;1(2):100024.
doi: 10.1016/j.aopr.2022.100024. PMID: 37846320; PMCID: PMC10577863.
218: Morgan IG, Jan CL. China Turns to School Reform to Control the Myopia
Epidemic: A Narrative Review. Asia Pac J Ophthalmol (Phila). 2022 Jan
18;11(1):27-35. doi: 10.1097/APO.0000000000000489. PMID: 35044336.
219: Weng C, Xia F, Xu D, Zhou X, Wu L. Axial length growth difference between
eyes after monocular laser refractive surgery: eight patients who underwent
myopic laser ablation for both eyes at intervals of several years. BMC
Ophthalmol. 2022 Jan 11;22(1):20. doi: 10.1186/s12886-022-02243-y. PMID:
35016626; PMCID: PMC8753812.
220: Lee SS, Lingham G, Sanfilippo PG, Hammond CJ, Saw SM, Guggenheim JA, Yazar
S, Mackey DA. Incidence and Progression of Myopia in Early Adulthood. JAMA
Ophthalmol. 2022 Feb 1;140(2):162-169. doi: 10.1001/jamaophthalmol.2021.5067.
PMID: 34989764; PMCID: PMC8739830.
221: Lv H, Wang Y, Sun S, Wei S, Guo Y, Wu T, Li X. The impact of COVID-19 home
confinement on axial length in myopic children undergoing orthokeratology. Clin
Exp Optom. 2023 Jan;106(1):15-19. doi: 10.1080/08164622.2021.2016352. Epub 2022
Jan 4. PMID: 34982947.
222: Su CY, Yeh LK, Tsao YF, Lin WP, Hou CH, Huang HF, Lai CC, Fang HW. The
Effect of Different Cleaning Methods on Protein Deposition and Optical
Characteristics of Orthokeratology Lenses. Polymers (Basel). 2021 Dec
9;13(24):4318. doi: 10.3390/polym13244318. PMID: 34960869; PMCID: PMC8707220.
223: Ran Z, Moore J, Jiang F, Guo H, Eliasy A, Lopes BT, Bao F, Jiang J, Abass
A, Elsheikh A. A new approach for quantifying epithelial and stromal thickness
changes after orthokeratology contact lens wear. R Soc Open Sci. 2021 Dec
22;8(12):211108. doi: 10.1098/rsos.211108. PMID: 34950488; PMCID: PMC8692962.
224: Tang Y, Chen Z, Wang W, Wen L, Zhou L, Wang M, Tang F, Tang H, Lan W, Yang
Z. A Deep Learning-Based Framework for Accurate Evaluation of Corneal Treatment
Zone After Orthokeratology. Transl Vis Sci Technol. 2021 Dec 1;10(14):21. doi:
10.1167/tvst.10.14.21. PMID: 34932118; PMCID: PMC8709934.
225: Ding C, Chen Y, Li X, Huang Y, Chen H, Bao J. The associations of
accommodation and aberrations in myopia control with orthokeratology. Ophthalmic
Physiol Opt. 2022 Mar;42(2):327-334. doi: 10.1111/opo.12930. Epub 2021 Dec 5.
PMID: 34866209; PMCID: PMC9300108.
226: Yuan Y, Zhu C, Liu M, Zhou Y, Yang X, Zheng B, Li Z, Mao X, Ke B. Efficacy
of combined orthokeratology and 0.01% atropine for myopia control: the study
protocol for a randomized, controlled, double-blind, and multicenter trial.
Trials. 2021 Dec 1;22(1):863. doi: 10.1186/s13063-021-05825-1. PMID: 34852833;
PMCID: PMC8633914.
227: Chen XH, Xiong Y, Wang JL, Yang B, Liu LQ. [Prospective Study on Corneal
Safety Evaluation of Children/Adolescents with Low and Moderate Myopia after
Long-Term Orthokeratology]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021
Nov;52(6):1006-1010. Chinese. doi: 10.12182/20211160107. PMID: 34841769; PMCID:
PMC10408815.
228: Ni NJ, Ma FY, Wu XM, Liu X, Zhang HY, Yu YF, Guo MC, Zhu SY. Novel
application of multispectral refraction topography in the observation of myopic
control effect by orthokeratology lens in adolescents. World J Clin Cases. 2021
Oct 26;9(30):8985-8998. doi: 10.12998/wjcc.v9.i30.8985. PMID: 34786382; PMCID:
PMC8567508.
229: Gispets J, Yébana P, Lupón N, Cardona G, Pérez-Corral J, Pauné J, Cortilla
B. Efficacy, predictability and safety of long-term orthokeratology: An 18-year
follow-up study. Cont Lens Anterior Eye. 2022 Feb;45(1):101530. doi:
10.1016/j.clae.2021.101530. Epub 2021 Nov 14. PMID: 34785154.
230: Bian Z, Xu X, Chen D, Ni H. Assessment of patient compliance in
orthokeratology and analysis of influencing factors: a cross-sectional study.
BMC Ophthalmol. 2021 Nov 16;21(1):396. doi: 10.1186/s12886-021-02148-2. PMID:
34784895; PMCID: PMC8594163.
231: Huang Y, Li X, Ding C, Chen Y, Chen H, Bao J. Orthokeratology reshapes eyes
to be less prolate and more symmetric. Cont Lens Anterior Eye. 2022
Aug;45(4):101532. doi: 10.1016/j.clae.2021.101532. Epub 2021 Nov 1. PMID:
34736858.
232: Liu G, Wu Y, Bi H, Wang B, Gu T, Du B, Tong J, Zhang B, Wei R. Time Course
of Perceived Visual Distortion and Axial Length Growth in Myopic Children
Undergoing Orthokeratology. Front Neurosci. 2021 Oct 13;15:693217. doi:
10.3389/fnins.2021.693217. PMID: 34720848; PMCID: PMC8548729.
233: Wu J, Fang W, Xu H, Liu X, Zhao D, Rong Q. The Biomechanical Response of
the Cornea in Orthokeratology. Front Bioeng Biotechnol. 2021 Oct 11;9:743745.
doi: 10.3389/fbioe.2021.743745. PMID: 34708026; PMCID: PMC8542762.
234: Lin W, Li N, Gu T, Tang C, Liu G, Du B, Wei R. The treatment zone size and
its decentration influence axial elongation in children with orthokeratology
treatment. BMC Ophthalmol. 2021 Oct 12;21(1):362. doi:
10.1186/s12886-021-02123-x. PMID: 34641799; PMCID: PMC8513184.
235: Sun CC, Liao GY, Liao LL, Chang LC. A Cooperative Management App for
Parents with Myopic Children Wearing Orthokeratology Lenses: Mixed Methods Pilot
Study. Int J Environ Res Public Health. 2021 Sep 30;18(19):10316. doi:
10.3390/ijerph181910316. PMID: 34639618; PMCID: PMC8507754.
236: Chen Y, Shen X. Compensatory Changes in the Anterior Segment and Vascular
System of the Eye in Myopic Children After Orthokeratology. Front Pediatr. 2021
Sep 9;9:663644. doi: 10.3389/fped.2021.663644. PMID: 34568237; PMCID:
PMC8458806.
237: Tse JSH, Cheung JKW, Wong GTK, Lam TC, Choi KY, So KHY, Lam CDM, Sze AYH,
Wong ACK, Yee GMC, Chan HHL. Integrating Clinical Data and Tear Proteomics to
Assess Efficacy, Ocular Surface Status, and Biomarker Response After
Orthokeratology Lens Wear. Transl Vis Sci Technol. 2021 Sep 1;10(11):18. doi:
10.1167/tvst.10.11.18. PMID: 34559185; PMCID: PMC8475286.
238: Chen YX, Liao CM, Tan Z, He MG. Who needs myopia control? Int J Ophthalmol.
2021 Sep 18;14(9):1297-1301. doi: 10.18240/ijo.2021.09.01. PMID: 34540602;
PMCID: PMC8403852.
239: Damani JM, Annasagaram M, Kumar P, Verkicharla PK. Alterations in
peripheral refraction with spectacles, soft contact lenses and orthokeratology
during near viewing: implications for myopia control. Clin Exp Optom. 2022
Sep;105(7):761-770. doi: 10.1080/08164622.2021.1970480. Epub 2021 Sep 19. PMID:
34538199.
240: Kang P, Maseedupally V, Gifford P, Swarbrick H. Predicting corneal
refractive power changes after orthokeratology. Sci Rep. 2021 Aug
17;11(1):16681. doi: 10.1038/s41598-021-96213-x. PMID: 34404885; PMCID:
PMC8371104.
241: Xu J, Gao B, Tian Q, Wu Q, Zhang X, Lin X, Zhang R, Song J, Bi H. Effects
of Orthokeratology on Axial Length Elongation in Anisometropes. Ophthalmic Res.
2021;64(6):991-1001. doi: 10.1159/000516907. Epub 2021 Jul 12. PMID: 34252901.
242: Jakobsen TM, Møller F. Control of myopia using orthokeratology lenses in
Scandinavian children aged 6 to 12 years. Eighteen-month data from the Danish
Randomized Study: Clinical study Of Near-sightedness; TReatment with
Orthokeratology Lenses (CONTROL study). Acta Ophthalmol. 2022
Mar;100(2):175-182. doi: 10.1111/aos.14911. Epub 2021 Jul 7. PMID: 34233094;
PMCID: PMC9292027.
243: Zhou H, Zhao G, Li Y. Adjunctive effects of orthokeratology and atropine
0.01% eye drops on slowing the progression of myopia. Clin Exp Optom. 2022
Jul;105(5):520-526. doi: 10.1080/08164622.2021.1943318. Epub 2021 Jul 6. PMID:
34228946.
244: Jiang F, Huang X, Xia H, Wang B, Lu F, Zhang B, Jiang J. The Spatial
Distribution of Relative Corneal Refractive Power Shift and Axial Growth in
Myopic Children: Orthokeratology Versus Multifocal Contact Lens. Front Neurosci.
2021 Jun 9;15:686932. doi: 10.3389/fnins.2021.686932. PMID: 34177459; PMCID:
PMC8219929.
245: Asmussen A, Smith BS, Møller F, Jakobsen TM. Repeatability and inter-
observer variation of choroidal thickness measurements using swept-source
optical coherence tomography in myopic danish children aged 6-14 years. Acta
Ophthalmol. 2022 Feb;100(1):74-81. doi: 10.1111/aos.14890. Epub 2021 Jun 14.
PMID: 34126650; PMCID: PMC9291036.
246: Tsai HR, Wang JH, Chiu CJ. Effect of orthokeratology on anisometropia
control: A meta-analysis. J Formos Med Assoc. 2021 Dec;120(12):2120-2127. doi:
10.1016/j.jfma.2021.05.024. Epub 2021 Jun 9. PMID: 34119394.
247: Tomiyama ES, Hu C, Marsack JD, Richdale K. Greater higher order aberrations
induced by toric orthokeratology versus soft toric multifocal contact lens wear.
Ophthalmic Physiol Opt. 2021 Jul;41(4):726-735. doi: 10.1111/opo.12839. Epub
2021 Jun 2. PMID: 34076904; PMCID: PMC8217292.
248: Guo B, Cheung SW, Kojima R, Cho P. One-year results of the Variation of
Orthokeratology Lens Treatment Zone (VOLTZ) Study: a prospective randomised
clinical trial. Ophthalmic Physiol Opt. 2021 Jul;41(4):702-714. doi:
10.1111/opo.12834. Epub 2021 May 15. PMID: 33991112; PMCID: PMC8251614.
249: Hao Q, Zhao Q. Changes in subfoveal choroidal thickness in myopic children
with 0.01% atropine, orthokeratology, or their combination. Int Ophthalmol. 2021
Sep;41(9):2963-2971. doi: 10.1007/s10792-021-01855-5. Epub 2021 May 5. PMID:
33954859; PMCID: PMC8364521.
250: Jonas JB, Ang M, Cho P, Guggenheim JA, He MG, Jong M, Logan NS, Liu M,
Morgan I, Ohno-Matsui K, Pärssinen O, Resnikoff S, Sankaridurg P, Saw SM, Smith
EL 3rd, Tan DTH, Walline JJ, Wildsoet CF, Wu PC, Zhu X, Wolffsohn JS. IMI
Prevention of Myopia and Its Progression. Invest Ophthalmol Vis Sci. 2021 Apr
28;62(5):6. doi: 10.1167/iovs.62.5.6. PMID: 33909032; PMCID: PMC8083117.
251: Jong M, Jonas JB, Wolffsohn JS, Berntsen DA, Cho P, Clarkson-Townsend D,
Flitcroft DI, Gifford KL, Haarman AEG, Pardue MT, Richdale K, Sankaridurg P,
Tedja MS, Wildsoet CF, Bailey-Wilson JE, Guggenheim JA, Hammond CJ, Kaprio J,
MacGregor S, Mackey DA, Musolf AM, Klaver CCW, Verhoeven VJM, Vitart V, Smith EL
3rd. IMI 2021 Yearly Digest. Invest Ophthalmol Vis Sci. 2021 Apr 28;62(5):7.
doi: 10.1167/iovs.62.5.7. PMID: 33909031; PMCID: PMC8088231.
252: Xu J, Tao C, Mao X, Lu X, Bao J, Drobe B, Chen H. Blur Detection
Sensitivity Increases in Children Using Orthokeratology. Front Neurosci. 2021
Mar 12;15:630844. doi: 10.3389/fnins.2021.630844. PMID: 33790734; PMCID:
PMC8006440.
253: Banerjee S, Horton J. Lenses and Spectacles to Prevent Myopia Worsening in
Children [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in
Health; 2021 Apr. PMID: 34255449.
254: Szczotka-Flynn LB, Shovlin JP, Schnider CM, Caffery BE, Alfonso EC, Carnt
NA, Chalmers RL, Collier S, Jacobs DS, Joslin CE, Kroken AR, Lakkis C, Pearlman
E, Schein OD, Stapleton F, Tu E, Willcox MDP. American Academy of Optometry
Microbial Keratitis Think Tank. Optom Vis Sci. 2021 Mar 1;98(3):182-198. doi:
10.1097/OPX.0000000000001664. PMID: 33771951; PMCID: PMC8075116.
255: Wu J, Xie H. Orthokeratology lens-related <i>Acanthamoeba</i> keratitis:
case report and analytical review. J Int Med Res. 2021
Mar;49(3):3000605211000985. doi: 10.1177/03000605211000985. PMID: 33752507;
PMCID: PMC7995463.
256: Guo B, Cho P, Efron N. Microcystic corneal oedema associated with over-wear
of decentred orthokeratology lenses during COVID-19 lockdown. Clin Exp Optom.
2021 Aug;104(6):736-740. doi: 10.1080/08164622.2021.1896944. Epub 2021 Mar 16.
PMID: 33725472.
257: Efron N, Morgan PB, Jones LW, Nichols JJ. 21st century citation analysis of
the field of contact lenses. Clin Exp Optom. 2021 Jul;104(5):634-638. doi:
10.1080/08164622.2021.1880867. Epub 2021 Feb 27. PMID: 33689666.
258: Németh J, Tapasztó B, Aclimandos WA, Kestelyn P, Jonas JB, De Faber JHN,
Januleviciene I, Grzybowski A, Nagy ZZ, Pärssinen O, Guggenheim JA, Allen PM,
Baraas RC, Saunders KJ, Flitcroft DI, Gray LS, Polling JR, Haarman AE, Tideman
JWL, Wolffsohn JS, Wahl S, Mulder JA, Smirnova IY, Formenti M, Radhakrishnan H,
Resnikoff S. Update and guidance on management of myopia. European Society of
Ophthalmology in cooperation with International Myopia Institute. Eur J
Ophthalmol. 2021 May;31(3):853-883. doi: 10.1177/1120672121998960. Epub 2021 Mar
5. PMID: 33673740; PMCID: PMC8369912.
259: Xiong F, Mao T, Liao H, Hu X, Shang L, Yu L, Lin N, Huang L, Yi Y, Zhou R,
Zhou X, Yi J. Orthokeratology and Low-Intensity Laser Therapy for Slowing the
Progression of Myopia in Children. Biomed Res Int. 2021 Jan 27;2021:8915867.
doi: 10.1155/2021/8915867. PMID: 33575355; PMCID: PMC7861936.
260: Loertscher M, Backhouse S, Phillips JR. Multifocal Orthokeratology versus
Conventional Orthokeratology for Myopia Control: A Paired-Eye Study. J Clin Med.
2021 Jan 24;10(3):447. doi: 10.3390/jcm10030447. PMID: 33498877; PMCID:
PMC7865534.
261: Pauné J, Fonts S, Rodríguez L, Queirós A. The Role of Back Optic Zone
Diameter in Myopia Control with Orthokeratology Lenses. J Clin Med. 2021 Jan
18;10(2):336. doi: 10.3390/jcm10020336. PMID: 33477514; PMCID: PMC7831104.
262: Zhao Q, Hao Q. Comparison of the Clinical Efficacies of 0.01% Atropine and
Orthokeratology in Controlling the Progression of Myopia in Children. Ophthalmic
Epidemiol. 2021 Oct;28(5):376-382. doi: 10.1080/09286586.2021.1875010. Epub 2021
Jan 20. PMID: 33472507.
263: Wang J, Li Y, Musch DC, Wei N, Qi X, Ding G, Li X, Li J, Song L, Zhang Y,
Ning Y, Zeng X, Hua N, Li S, Qian X. Progression of Myopia in School-Aged
Children After COVID-19 Home Confinement. JAMA Ophthalmol. 2021 Mar
1;139(3):293-300. doi: 10.1001/jamaophthalmol.2020.6239. PMID: 33443542; PMCID:
PMC7809617.
264: Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ.
Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother. 2021
Jan;133:111092. doi: 10.1016/j.biopha.2020.111092. Epub 2020 Dec 14. PMID:
33378986.
265: Cho P, Cheung SW, Boost MV. Categorisation of myopia progression by change
in refractive error and axial elongation and their impact on benefit of myopia
control using orthokeratology. PLoS One. 2020 Dec 29;15(12):e0243416. doi:
10.1371/journal.pone.0243416. PMID: 33373370; PMCID: PMC7771698.
266: Kong QH, Du XY, Li X, Wu ZZ, Lin ZL. Effects of orthokeratology on
biological parameters and visual quality of adolescents with low-grade corneal
astigmatism myopia. Eur Rev Med Pharmacol Sci. 2020 Dec;24(23):12009-12015. doi:
10.26355/eurrev_202012_23989. PMID: 33336786.
267: Zhang X, Ma JH, Xi X, Guan L. Characteristics of corneal high-order
aberrations in adolescents with mild to moderate myopia. BMC Ophthalmol. 2020
Nov 26;20(1):465. doi: 10.1186/s12886-020-01727-z. PMID: 33243174; PMCID:
PMC7690177.
268: Pereira-da-Mota AF, Costa J, Amorim-de-Sousa A, González-Méijome JM,
Queirós A. The Impact of Overnight Orthokeratology on Accommodative Response in
Myopic Subjects. J Clin Med. 2020 Nov 17;9(11):3687. doi: 10.3390/jcm9113687.
PMID: 33213015; PMCID: PMC7698488.
269: Zhao Q, Hao Q. Clinical efficacy of 0.01% atropine in retarding the
progression of myopia in children. Int Ophthalmol. 2021 Mar;41(3):1011-1017.
doi: 10.1007/s10792-020-01658-0. Epub 2020 Nov 17. PMID: 33205372; PMCID:
PMC7943497.
270: Xu S, Li Z, Hu Y, Zhao W, Jiang J, Feng Z, Chen W, Li C, Chen L, Fang B,
Wang H, Zhai Z, Li B, Zeng J, Yang X. Development and validation of a prediction
model for axial length elongation in myopic children treated with overnight
orthokeratology. Acta Ophthalmol. 2021 Aug;99(5):e686-e693. doi:
10.1111/aos.14658. Epub 2020 Nov 16. PMID: 33191611.
271: Tang T, Yu Z, Xu Q, Peng Z, Fan Y, Wang K, Ren Q, Qu J, Zhao M. A machine
learning-based algorithm used to estimate the physiological elongation of ocular
axial length in myopic children. Eye Vis (Lond). 2020 Oct 22;7:50. doi:
10.1186/s40662-020-00214-2. PMID: 33102610; PMCID: PMC7579939.
272: Yin Y, Zhao Y, Fu Y, Xiang A, Wu X, Wen D. Clinical results of
orthokeratology therapy in adolescents with low to moderate myopia. Zhong Nan Da
Xue Xue Bao Yi Xue Ban. 2020 Aug 28;45(8):966-972. English, Chinese. doi:
10.11817/j.issn.1672-7347.2020.190196. PMID: 33053540.
273: Lin Z, Duarte-Toledo R, Manzanera S, Lan W, Artal P, Yang Z. Two-
dimensional peripheral refraction and retinal image quality in orthokeratology
lens wearers. Biomed Opt Express. 2020 Jun 4;11(7):3523-3533. doi:
10.1364/BOE.397077. PMID: 33014548; PMCID: PMC7510915.
274: Ouzzani M, Mekki MB, Chiali S, Kail F, Chahed L. Practice of
orthokeratology in Algeria: a retrospective study. J Optom. 2021 Apr-
Jun;14(2):176-182. doi: 10.1016/j.optom.2020.05.003. Epub 2020 Sep 26. PMID:
32988782; PMCID: PMC8093529.
275: Mohidin N, Mat Yacob A, Norazman FN. Corneal thickness and morphology after
orthokeratology of six-month lens wear among young Malay adults. Med J Malaysia.
2020 Sep;75(5):538-542. PMID: 32918423.
276: Ruiz-Pomeda A, Villa-Collar C. Slowing the Progression of Myopia in
Children with the MiSight Contact Lens: A Narrative Review of the Evidence.
Ophthalmol Ther. 2020 Dec;9(4):783-795. doi: 10.1007/s40123-020-00298-y. Epub
2020 Sep 11. PMID: 32915454; PMCID: PMC7708530.
277: Cho WH, Fang PC, Yu HJ, Lin PW, Huang HM, Kuo MT. Analysis of tear film
spatial instability for pediatric myopia under treatment. Sci Rep. 2020 Sep
8;10(1):14789. doi: 10.1038/s41598-020-71710-7. PMID: 32901095; PMCID:
PMC7478966.
278: Tsai WS, Wang JH, Chiu CJ. A comparative study of orthokeratology and low-
dose atropine for the treatment of anisomyopia in children. Sci Rep. 2020 Aug
25;10(1):14176. doi: 10.1038/s41598-020-71142-3. PMID: 32843658; PMCID:
PMC7447800.
279: Queirós A, Pereira-da-Mota AF, Costa J, Amorim-de-Sousa A, Fernandes PRB,
González-Méijome JM. Retinal Response of Low Myopes during Orthokeratology
Treatment. J Clin Med. 2020 Aug 14;9(8):2649. doi: 10.3390/jcm9082649. PMID:
32824056; PMCID: PMC7463747.
280: Bremond-Gignac D. Myopie de l’enfant [Myopia in children]. Med Sci (Paris).
2020 Aug-Sep;36(8-9):763-768. French. doi: 10.1051/medsci/2020131. Epub 2020 Aug
21. PMID: 32821053.
281: Zhou J, Xue F, Zhou X, Naidu RK, Qian Y. Correction to: Thickness profiles
of the corneal epithelium along the steep and flat meridians of astigmatic
corneas after orthokeratology. BMC Ophthalmol. 2020 Aug 18;20(1):338. doi:
10.1186/s12886-020-01607-6. Erratum for: BMC Ophthalmol. 2020 Jun 19;20(1):240.
doi: 10.1186/s12886-020-01477-y. PMID: 32811455; PMCID: PMC7433141.
282: Wang S, Wang J, Wang N. Combined Orthokeratology with Atropine for Children
with Myopia: A Meta-Analysis. Ophthalmic Res. 2021;64(5):723-731. doi:
10.1159/000510779. Epub 2020 Aug 11. PMID: 32781450.
283: Yoo YS, Kim DY, Byun YS, Ji Q, Chung IK, Whang WJ, Park MR, Kim HS, Na KS,
Joo CK, Yoon G. Corrigendum to "Impact of peripheral optical properties induced
by orthokeratology lens use on myopia progression" [Heliyon 6 (4), (April 2020)
Article e03642]. Heliyon. 2020 Jul 30;6(7):e04510. doi:
10.1016/j.heliyon.2020.e04510. Erratum for: Heliyon. 2020 Apr 04;6(4):e03642.
doi: 10.1016/j.heliyon.2020.e03642. PMID: 32775717; PMCID: PMC7399116.
284: Lee JH, Hong IH, Lee TY, Han JR, Jeon GS. Choroidal Thickness Changes after
Orthokeratology Lens Wearing in Young Adults with Myopia. Ophthalmic Res.
2021;64(1):121-127. doi: 10.1159/000510715. Epub 2020 Aug 6. PMID: 32759609.
285: Kinoshita N, Konno Y, Hamada N, Kanda Y, Shimmura-Tomita M, Kaburaki T,
Kakehashi A. Efficacy of combined orthokeratology and 0.01% atropine solution
for slowing axial elongation in children with myopia: a 2-year randomised trial.
Sci Rep. 2020 Jul 29;10(1):12750. doi: 10.1038/s41598-020-69710-8. PMID:
32728111; PMCID: PMC7391648.
286: Sánchez-González JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, Sánchez-
González MC, Capote-Puente R. The Combined Effect of Low-dose Atropine with
Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment
Status for Myopia. J Clin Med. 2020 Jul 24;9(8):2371. doi: 10.3390/jcm9082371.
PMID: 32722266; PMCID: PMC7465046.
287: Scanzera AC, Tu EY, Joslin CE. Acanthamoeba Keratitis in Minors With
Orthokeratology (OK) Lens Use: A Case Series. Eye Contact Lens. 2021 Feb
1;47(2):71-73. doi: 10.1097/ICL.0000000000000728. PMID: 32649389; PMCID:
PMC7790837.
288: Tomiyama ES, Logan AK, Richdale K. Corneal Elevation, Power, and
Astigmatism to Assess Toric Orthokeratology Lenses in Moderate-to-High
Astigmats. Eye Contact Lens. 2021 Feb 1;47(2):86-90. doi:
10.1097/ICL.0000000000000721. PMID: 32568927; PMCID: PMC7749028.
289: Zhou J, Xue F, Zhou X, Naidu RK, Qian Y. Thickness profiles of the corneal
epithelium along the steep and flat meridians of astigmatic corneas after
orthokeratology. BMC Ophthalmol. 2020 Jun 19;20(1):240. doi:
10.1186/s12886-020-01477-y. Erratum in: BMC Ophthalmol. 2020 Aug 18;20(1):338.
doi: 10.1186/s12886-020-01607-6. PMID: 32560640; PMCID: PMC7304131.
290: Wan K, Lau JK, Cheung SW, Cho P. Orthokeratology with increased compression
factor (OKIC): study design and preliminary results. BMJ Open Ophthalmol. 2020
May 4;5(1):e000345. doi: 10.1136/bmjophth-2019-000345. PMID: 32420450; PMCID:
PMC7223350.
291: Bullimore MA, Johnson LA. Overnight orthokeratology. Cont Lens Anterior
Eye. 2020 Aug;43(4):322-332. doi: 10.1016/j.clae.2020.03.018. Epub 2020 Apr 22.
PMID: 32331970.
292: Hsieh MC, Huang JY, Liu YL, Lin CP. Bilateral corneal keloids after eyelid
compression. Taiwan J Ophthalmol. 2020 Mar 4;10(1):58-61. doi:
10.4103/tjo.tjo_120_18. PMID: 32309126; PMCID: PMC7158929.
293: Singh K, Bhattacharyya M, Goel A, Arora R, Gotmare N, Aggarwal H.
Orthokeratology in Moderate Myopia: A Study of Predictability and Safety. J
Ophthalmic Vis Res. 2020 Apr 6;15(2):210-217. doi: 10.18502/jovr.v15i2.6739.
PMID: 32308956; PMCID: PMC7151515.
294: Yoo YS, Kim DY, Byun YS, Ji Q, Chung IK, Whang WJ, Park MR, Kim HS, Na KS,
Joo CK, Yoon G. Impact of peripheral optical properties induced by
orthokeratology lens use on myopia progression. Heliyon. 2020 Apr 4;6(4):e03642.
doi: 10.1016/j.heliyon.2020.e03642. Erratum in: Heliyon. 2020 Jul
30;6(7):e04510. doi: 10.1016/j.heliyon.2020.e04510. PMID: 32274428; PMCID:
PMC7132157.
295: Yu LH, Jin WQ, Mao XJ, Jiang J. Effect of orthokeratology on axial length
elongation in moderate myopic and fellow high myopic eyes of children. Clin Exp
Optom. 2021 Jan;104(1):22-27. doi: 10.1111/cxo.13067. PMID: 32266747.
296: Shu B, Bao F, Savini G, Lu W, Tu R, Chen H, Song B, Wang Q, Huang J. Effect
of orthokeratology on precision and agreement assessment of a new swept-source
optical coherence tomography biometer. Eye Vis (Lond). 2020 Mar 2;7:13. doi:
10.1186/s40662-020-00177-4. PMID: 32161772; PMCID: PMC7053116.
297: Zhang J, Li J, Li X, Li F, Wang T. Redistribution of the corneal epithelium
after overnight wear of orthokeratology contact lenses for myopia reduction.
Cont Lens Anterior Eye. 2020 Jun;43(3):232-237. doi: 10.1016/j.clae.2020.02.015.
Epub 2020 Feb 29. PMID: 32127287.
298: Kang P, Lam M, Doig G, Stapleton F. The myopia movement. Clin Exp Optom.
2020 Mar;103(2):129-130. doi: 10.1111/cxo.13040. PMID: 32092794.
299: Tse JS, Lam TC, Cheung JK, Sze YH, Wong TK, Chan HH. Data on assessment of
safety and tear proteome change in response to orthokeratology lens - Insight
from integrating clinical data and next generation proteomics. Data Brief. 2020
Jan 28;29:105186. doi: 10.1016/j.dib.2020.105186. PMID: 32071970; PMCID:
PMC7013139.
300: Queirós A, Lopes-Ferreira D, Yeoh B, Issacs S, Amorim-De-Sousa A, Villa-
Collar C, González-Méijome J. Refractive, biometric and corneal topographic
parameter changes during 12 months of orthokeratology. Clin Exp Optom. 2020
Jul;103(4):454-462. doi: 10.1111/cxo.12976. Epub 2019 Nov 6. PMID: 31694069.
301: Douglass A, Keller PR, He M, Downie LE. Knowledge, perspectives and
clinical practices of Australian optometrists in relation to childhood myopia.
Clin Exp Optom. 2020 Mar;103(2):155-166. doi: 10.1111/cxo.12936. Epub 2019 Jun
30. PMID: 31257703.